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Message  from the Director General

Department of  Mathematics  of  National Institute  of  Education time to time implements many

different  activities to develop the mathematics education. The publication of  this book is a mile

stone which was written in the name of  “Statics - Part  I, Statics - Part  II”.

After learning of grade 12 and 13 syllabus, teachers should have prepared the students for the

General Certificate of  Education (Advanced Level) which is the main purpose of them. It has not

enough appropriate teaching - learning  tools for the proper utilization. It is well known to all,

most of the instruments available in the market are not appropriate for the use and it has not

enough quality in the questions.   Therefore  “Statics - Part  I, Statics - Part  II”.  book was

prepared by the Department of  Mathematics of  National Institute of Education  which was to

change of the situation and to ameliorate the students for the examination.  According to the

syllabus the book is prepared for the reference and valuable book for reading. Worked examples

are included which will be helpful to the teachers and the students.

I kindly request the teachers and the students to utilize this book for the mathematics  subjects’ to

enhance the teaching and learning process effectively. My gratitude goes to Aus Aid project for

sponsoring and immense contribution  of the internal and external resource persons from the

Department of Mathemetics for toil hard for the book of  “Statics - Part  I, Statics - Part  II”.

Dr. (Mrs). T. A. R. J. Gunasekara

Director General

National Institute of Education.
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Message  from the Director

Mathematics holds a special place among the G.C.E. (A/L) public examination prefer to the

mathematical subject area. The footprints of the past history record that the country’s as well as

the world’s inventor’s spring from the mathematical stream.

The aim and objectives of designing the syllabus for the mathematics stream is to prepare the

students to become experts in the Mathematical, Scientific and Technological world.

From 2017 the Combined Mathematics syllabus has been revised and implemented. To make

the teaching - learning of these subjects easy, the Department of Mathemactics of National

Institute of Education has prepared Statics - Part  1 and Part 11 as the supplementary reading

books. There is no doubt that the exercises in these books will measure their achievement level

and will help the students to prepare themselves for the examination. By practicing the questions

in these books the students will get the experience of the methods of answering the questions.

Through the practice of these questions, the students will develop their talent, ability, skills and

knowledge. The teachers who are experts in the subject matter and the scholars who design the

syllabus, pooled their resources to prepare these supplementary reading books. While preparing

these books, much care has been taken that the students will be guided to focus their attention

from different angles and develop their knowledge. Besides,  the  books will help the students for

self-learning.

I sincerely thank the Director General for the guidance and support extented and the resource

personnel for the immense contribution. I will deeply appreciate any feedback that will shape the

reprint of the books.

Mr. K. R. Pathmasiri

Director

Department of Mathematics
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Preface

This book is being prepared for the students of Combined Mathematics G.C.E.A/L to get familiar

with the subject area of Statics. It is a supplementary book meant for the students to get practice

in answering the questions for self learning. The teachers and the students are kindly invited to

understand, it is not a bunch of model questions but a supplementary to encourage the students

towards self learning and to help the students who have missed any area in the subject matter to

rectify them.

The students are called upon to pay attention that after answering the questions in worked examples

by themselves, they can compare their answers with the answers given in the book. But it is not

necessary that all the steps have taken to arrive at the answers should tally with the steps mentioned

in the book’s answers given in this book are only a guide.

Statics Part 11 is released in support of the revised syllabus - 2017. The book targets the

students who will sit for the GCE A/L examination – 2019 onwards. The Department of

Mathematics of National Institute of Education  already released  Practice Questions and

Answers  book and book of     ‘Statics – I ’, it is being proceeded by the “ Statics II”.  There

are other two books soon be released with the questions taken Unit wise “Questions bank”.

We shall deeply appreciate your feedback that will contribute to the reprint of this book.

Mr.S.Rajendram

Project  Leader

Grade 12, 13 Maths

National Institute of Education.
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5.0  Jointed Rods

In previous chapters 4.1 and 4.2 we considered the action of coplanar forces acting on a single rigid body
In this chapter we shall consider the action of coplanar forces acting on two or more rigid bodies, specially
on number of heavy rods jointed together to form a frame.

We will consider the equilibirium of rods under the action of their weight, any external forces applied and
forces exerted on their ends by hings (joints)

5.1 Types of simple joints

(i) Rigid Joint

When two rods are jointed together such a way that they cannot be seperated or turn about one another
at the joint, the joint is rigid joint.

(ii) Pin Joint

When two rods are jointed by a light pin such a way that they can turn at the joint, the joint is pin joint if they
can turn freely at the joint, the joint is a smooth pin joint and, if free turn is not possible the joint is a rough
joint.

We shall consider the frames with smooth pin joints in this chapter.

5.2 Rigid joint

If the shape of a body obtained by joining two or more bodies together cannot be changed by external
forces then the joint is said to be a rigid joint.

Force at a smooth joint (Pin joint)

The joints are shown seperately to show the reaction at the joint.
The reaction at the joints will be equal and opposite. To find R
easily the components of R are shown as follows.

Joint

Pin joint

Rigid jointFree joint

Rough jointSmooth joint

Bowl joint

R

R
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X X

Y

Y

X, Y are the horizontal and vertical components of R. R is the resultant of X and Y, and passes through the
pin joint.

The light pin is assumed to be a small smooth pin of circular rim, joins the rod by passing through the rods.
As the pin is smooth the reaction on contact is perpendicular to it and for rods. Since the pin is in equilibirium
under these two forces, they are equal opposite in direction and have the sameline of action. Therefore the
reaction on each rod is equal and opposite and have the same line of action an each joints.

For conveneience we resolve the reaction into two perpendicular components when we need of it.

Note :

When a heavy rod is joined at its ends to another rod, the reaction by joints on the rod cannot lie
along the rod, since the rod is acted by three forces.

For equilibrium forces should meet at one point O which cannot lie on AB.

If the rod is light, it is acted by the two reactions only, so that they always lie along the rod to balance each
other.

When a framework is symmetric about an axis identical set of forces will act on both sides.

Instructions to solve problems

(i) Correct diagram has to be drawn with geometrical data.

(ii) Forces should be marked correctly.

(iii) Necessary equations should be obtained to find the unknown forces.

(iv) To find  the reactions at a joint the force at the joint should be divided into two components and to be
marked.

(If there is axis of symmetry, it should be stated and the results can be used)

Note :

A framework must be rigid. To make a framework of n jonts (n >3) to be rigid it is necessary to
have (2n-3) rods.

A framework with more than (2n-3) rods will make the framework over rigid.

>

>

A W

B

O
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5.3 Worked examples

Example 1

Three uniform equal rods of length 2a and weight W are freely  jointed at their end points and the frame
ABC is suspended from the joint A . Find the magnitude and direction of the reaction at B on AB.

Consider the equilibrium of BC

Taking moments about C for BC

C         .  + Y . 2   = 0

                   2Y + W = 0       ; Y = -
2

W a a

W

m

Consider the equilibrium of AB.

Taking momements about A for AB

A         Y(2 sin 30 ) + X (2 cos30 )  ( sin 30  ) = 0a a W a   m

2Y + 2X cot 30   = W

2Y +  2 3X  = W

 -   + 2 3X = W W ; X = 
3

W

2 2R = X Y    
2 2W W

+
3 4

    
7

 = 
12

W

-1Y 3 3
tan   =   =   ;        = tan

X 2 2

 
   

 
 

Magnitude of the reaction at B =
7

12
 W ; R makes an angle   with CB where  -1 3

 = tan
2


 
  
 
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Example 2
Two uniform rods AB, AC each of length 2a and weight W are smoothly jointed at A. The rods are in
equilibrium in a vertical plane with B and C lying on a smooth horizontal plane and C is connected to the

midpoint of AB by an inextensible string and ˆBAC 60  . Find the tension in the string and the reaction
at A.

AB = AC ; ˆBAC 60 

Therefore ABC is an equilateral triangle.

For equilibrium of AB and AC,

Resolving vertically

1 2 1 2R R R R+ - 2W = 0  ;   +  = 2W ........................ 

Taking moment about C

Cm     1-R . 4 cos 60 cos 60 3 cos 60 0a ° +W . a ° +W . a ° = ......... 

1 2R    and     R =  W W

For equilibrium of AC,

A m 2- . cos 60 T . R . 2 cos 60 0W a a a     .................. 

- T 0;   T = 
2 2

W W
W  

For equilibrium of AC, moment about A

Resolving horizontally,

3
X T cos 30 0 ;   X T cos 30

4

W
      

Resolving vertically,

2R Y T sin 30 0W     

2

T
Y R

2 4

W
W   

Hence reaction at A is 
2 2

2 2 3
X Y

16 16 2

W W W
   
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Example 3

Two uniform equal rods AB, AC each of weight W are smoothly jointed at A. The ends B and C rest on a
horizontal smooth plane and the frame ABC is kept in a vertical plane. The equilibrium is maintained by

connecting midpoints of AB and AC by an inextensible string. If ˆBAC 2 , find the tension in the string
and the magnitude of the reaction at A on AB.

Let AB = AC = 2a

For the equilibrium of AB and AC,

Resolving vertically,

2R 2 0W  

  R = W ................................

For equilibrium of AB,

Resolving vertically,

R+ Y - 0W 

    + Y -  = 0 ; Y = 0 W W ...................

Resolving horizontally,

T X 0 ;  T X      ....................... 

         Taking moment about A for equilibrium of AB,

Am T. cos . sin R . 2 sin 0a W a a    

 2 sin
T tan

cos

W W
W







  ...................

Reaction at A is tanW 

Note :

In the above example the system is symmetrical about the vertical axis through A

Now the reaction at A is given by

Since the system is symmetri about the vertical axis through A, the forces should be as given below.

Hence Y = 0
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Example 4

AB, BC are two uniform rods each of lengh 2a and weight W, smoothly hinged at B, and the frame ABC
is suspended from the points A and C at the same horizontal level. The systerm is in a vertical plane and
each rod makes 30° with the horizontal. Find the reaction at the joint B.

The system is symmetrical about the vertical line
through B.

Therefore the vertical component (Y) of the reaction
at B is zero (Y=0)

For the equilibrium of AB

By taking moments about A

Am X . 2 sin 30 Y . 2 cos30 cos 30 0a a Wa      

            X . 2 sin 30 . cos 30a W a   

                                             
3

X
2

W
 

Example 5

AB, BC are two equal uniform rods each of length 2a and weight W and 2W respectively. The rods are
smoothly jointed at B and the frame ABC is suspended from A and C at the same horizontal level. The
system is in the vertical plane and each rod makes 60° with the horizontal. Find the magnitude and the
direction of the reaction at the joint B on AB.

For equilibrium of the system

Resolving horizontally,

1 2 1 2X X 0 ;   X X   

Resolving vertically

1 2 1 2R R 3 0   ;   R R 3W W     

For AB and AC moment about A

Am      2

3
R .2 . 2 . 0

2 2

a a
a W W  

2 2 1

7 7 5
2R  ;  R  and R

2 4 4

W W W
  

For equilibrium of BC,

Resolving vertically 2 2

7
 R 2 Y = 0 ; Y = R 2  = 2  = 

4 4

W W
W W W     
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B

C

A

For equilibrium of BC

Cm X . 2  sin 60  + Y. 2  cos 60  + 2 .  cos 60  = 0 a a W a  

X. 2  sin 60   . 2  cos 60  + 2 .  cos 60  = 0
4

W
a a W a   

3W
 X  = - 

4

  
2 23

R =  
16 16

W W


  R = 
2

W

       

14tan θ =   = 
3 3

4

W

W

  
-1 1

θ = tan
3

 
 
 

     =  
6



Example 6

Three uniform equal rods AB, BC, AC each of length 2a and weight W are smoothly jointed at their ends
to form an equilateral triangle. The frame is freely hinged at A in a vertical plane. The triangle is kept in
equilibrium with AB as horizontal and C is below AB by a force at B perpendicular to BC by a force P at
B perpendicular to BC. AB is horizontal and C is below AB. Find the value of P. Also find the horizontal
and vertical components of the horizontal and vertical components of the reaction at C.

By taking moments about A for the system

Am    -  .  cos 60  - .  -  (2  -  cos 60 ) + P. 2  cos 60  = 0W a W a W a a a  

P = 3W

By taking moment about A for equilibrium of AC,

Am     X. 2  sin 60  + Y. 2  cos 60  + .  cos 60   = 0a a W a  

Y
  X +   -

3 2 3

W
  .............................. 

By taking moments about B for equilibrium of BC,

Bm X . 2  sin 60  - Y . 2  cos 60  + .  cos 60  = 0 a a W a  

Y
 X -   -

3 2 3

W
  ................................ 

W

4

3W

4
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From  and  

      Y = 0

     
W

X = -
2 3

Reaction at C is 
W

2 3

Example 7

Two uniform rods AB and BC each of length 2a and weights 2W, W respectively are smoothy hinged at
B. The mid points of the rods are connected by a light in inelastic string. The system in a vertical plane with

other ends A and C lie on a smooth horizontal table. If ˆABC = 2θ  show that the tension in the string is

3W
tan θ

2
. Find the magnitude and direction of the reaction at B.

For the equilibrium of the system,

By taking moments about C

Cm W.  sin θ + 2W. 3  sin θ - R. 4  sin θ  = 0a a a

7W
 R = 

4

For equilibrium of AB , taking moment about B

Bm T.  cos θ + 2 .  sin θ - R. 2a sin θ = 0a W a

T = -2W tanθ + 2R. tanθ

7W
T = -2W tanθ +  tanθ

2

3W
T = tanθ

2

For equilibrium of AB

Resolving horizontally,

3
 T - X  = 0 ; X = T = tan

2

W


Resolving vertically,

 Y + R - 2  = 0W
W

4

3W
tan

4
2 2

2 2
2

2

7W W
Y = 2W - 

4 4

R X +Y

9W W
tan

4 16

W
1 36tan

4









 

 
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Example 8

AB, BC, CD, DE are four uniform equal rods of length 2a , smoothly jointed at B, C and D. The weights
of AB, DE are 2W each and the weights of BC, CD are W each. The system is suspended from A and E

at the same horizontal level. AB and BC make  α, β with the vertical respectively. Show that the reaction

at C is horizontal and the magnitude is 
W

tan β
2

. Show also that tan β = 4 tan .

The system is symmetrical about the vertical axis through C

Therefore the vertical component of the reaction at C is zero.  Y
1
 = 0

For the equilibrium of BC

Resolving the forces horizontally

1 2X X 0  

   1 2X = X

Resolving the forces vertically

1 2Y + Y 0W  

        
2Y = W

moment about B

Bm    1X . 2 cos β . sin β = 0a W a 

    1X tan β
2

W
 

For equilibrium of AB,

Am    2 2X . 2 cos 2 . sin Y .  2 sin  = 0a W a a    

2X 2 tanW  

  1 2X X

    tan β = 2 tan
2

W
W 

       tan β = 4 tan
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Example 9

Two equal uniform rods AB and AC each of weight W are freely jointed at A, and the ends B and C are
connected by a light  inextensible string. The rods are kept in equilibrium in a vertical plane with the ends B

and C on two smooth planes each of which inclined at an angle α to the horizontal; BC being horizontal and

A being above BC. Find the reaction at B. If tan θ  > tan 2 , where ˆBAC = 2θ  then show that the

tension in the string is  
1

tan θ - 2 tan
2

W  . Find also the reaction at the joint A.

Let 2a be the length of each rod.

The system is symmetrical about the vertical axis through A.

Hence the vertical component of the reaction at A is zero.

For equilibrium of the system

Resolving vertically,

2R cos  2  = 0  ;  R = cosW W  

For equilibrium of AB, Taking moment about A

Am      T. 2  cos θ + R sin . 2 cos θ + W . a sin θ - R cos . 2 sin θ = 0a a a 

         T = tan θ - 2 tan
2

W


For equilibrium of AB,

Bm        X . 2  cos θ - W . sin θ = 0a a

     X = tan θ 
2

W
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Example 10

AB, BC, CD and AD are four uniform rods having lengths AB = AD = 3  and BC = DC =   and are
smoothly jointed at their ends  to form a frame ABCD. The rods have weights W per unit length. The joints

A and C are connected by an inelastic string of length 2 . The frame is suspended in a vertical plane from

A. Show that the tension in the string is   3 5
4

W




Method 1

2 2 2 2 2 2AB  + BC = 3 4 AC

ˆ ˆˆTherefore, ABC = 90 , BAC = 30 , BCA = 60

  

  

  

The system is symmetrical about AC. Hence reactions at B and D are same.

For equilibrium of AB, Taking moment about A

Am    
3

X. 3 cos 30  + Y. 3 sin 30  - 3 . sin 30 0
2

W      

   
3

X . cot 30  + Y  =  
2

W 

3
3X + Y  =  

2
W ................................ 

For equilibrium of BC , moment about C

Cm    Y . sin 60 W . sin 60  - X .  cos 60  = 0
2

   


  

X
Y +   =  

2 3

W

         
3

 X  = 3Y + 
2

W
 ..................... 

Substitute  and  

3
 Y + 3X = 

2

W
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 

3 3
Y + 3 3Y +   =    

2 2

3 3
4Y +  =  

2 2

Y = 3 3
8

W W

W W

W

 
  
 



 

 



for equilibrium of BC and CD

  T 2Y  2W  = 0   

 

 

T = 2Y + 2

T = 2 3 3  + 2
8

T 3 5
4

W

W
W

W



 








or For BC and CD take moments about D

Method 2

2 2 2 2 2 2

0 0 0

AB  + BC = 3 4 AC

ˆ ˆˆABC = 90  , BAC = 30  , BCA = 60

    

By symmetry reactions at B and D are same.

The components of the reaction at B are taken along BA and BC, since  0ˆABC = 90

For the equilibrium of the rod AB,

Am     
3

3 . sin 30  - Y. 3  = 0
2

3
 Y  = 

4

W

W




 



For the equilibrium of BC,

Cm    W . sin 60 - X.  = 0
2


 

    
3W

X  =  
4



For the equilibrium of BC and CD,  Resolving vertically

 

T - 2  + 2X cos 30  - 2Y cos 60  = 0

T = 2  + 2Y cos 60 - 2X cos 30

3W 3W
 = 2W 3.

4 4

W
 = 3 5

4

W

W

 

 

 







 




'T 2W 2 3W  

2
3W 3W

W W
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Example 11

Four uniform rods AB, BC, CD, DA each of length 2a and weight W are freely hinged at their ends, and
rest with the upper rods AB, AD in contact with two smooth pegs in the same horizontal line at a distance

2c apart. If the inclination of the rods to the vertical is θ, determaine the horizontal and vertical components

of the reaction at B and prove that 32 sinc a  .

The system is symmetrical about AC. Therefore, the vertical components of the reaction at A and C are
zero.

For equilibrium of the system,

Resolving vertically,

2R sin 4  = 0W 

2
R = 

sin

W


....................... 

For equilibrium of BC,

Bm     2X . 2 cos . sin 0a W a  

2

tan
X

2

W 
  ................  

Resolving horizontally,

2 3 3 2

tan
X X 0;   X X

2

W 
     ......

Resolving vertically

3 3Y W = 0 ;  Y = W  ..................

For equilibrium of AB,

Am   3 3

3

2

c
R. . sin Y .2 sin X .2 cos 0

sin

2 .c
W. sin .2 sin .2 sin 0 ;      2 sin

sin 2

Wa a a

W W
a W a a c a

    

     

  


   

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ˆ     ADB  = 90

1
 sin 2θ = 

2

          2  = 
6

             = 
12











Example 12

Two equal uniform rods AB, AC each of length 2a and weight W are smoothly jointed at A. BD is a
weightless bar of length a, smoothly jointed at B and fastened at D to a small smooth light ring sliding on
AC. The system is in equilibrium in a vertical plane with ends B and C resting on a horizontal plane. Show

that the magnitude of the reaction at A is equal to  W
3 2 6

12
 . Also show that the magnitude of the

reaction at A is equal to the stress on BD and it makes an angle 15° with the horizontal.

Find the point where the line of action meets BC.

For the equilibrium of the ring R
1
 = T and R

1
 is perpendicular to AC, so T is perpenticular to AC

For the system
Resolve the forces vertically

  R + S  =  2W

By taking moment about C

Cm .  cos 75  + . 3  cos 75  = R. 4  cos 75W a W a a  = 0

   R = W

        R = S=W
Consider the equilibrium of the rod AC

By taking moments about A for AC

Am

For the rod AB resolve the forces horizontally and vertically

     X = T cos 15 ;        Y = T sin 15       ;

Using sine rule in ABP

2>
R

1

2 2

0

X
A = X Y  = T ;  tan =  

Y

                                                = tan 15

                                            15











)

>>>

>


X

Y

)750
150)

>>

A

P B

 

BP AB 2 . sin 60
 =   BP =  

sin 60 sin 45 sin 15

3
2 .

2 62   BP =  =  BP = 3 2 6
3 1 3 1

2 2

a

a
a




  

 
 

 

T. 3 + .  sin 15  - .2  sin 15  = 0

sin 15
     T =   = 3 2 6

123

a W a W a

W W

 



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5.4 Exercises

1. Two uniform rods AB and AC of equal length are freely hinged at B. The weights of AB and BC are
W

1
 and W

2
 respectively. The system freely hangs from fixed points B and C at the same level and

BC = 2a. If the depth of A below BC is a, find the horizontal and vertical components of the reaction
at A.

2. Two equal uniform rods AB, BC each of weight W are smoothly jointed at B and their midpoints are

connected by an inextensible string. The string has length such as when it is taut  ˆABC makes 90°.

The system is suspended from A freely while the string is taut. Show that the inclination of AB with the

vertical at equilibrium is 1 1
tan

3
  
 
 

 and the tension in the string is 
3

5

W
. Also find the reaction on BC

and show that it is in the direction of BC.

3. Two uniform equal rods AB, AC of length 2a and weight W, smoothly jointed at A lie symmetrically
on the curved surface of a right circular cylinder whose axis is fixed horizontally. If each rod makes an

angle θ with the horizontal and r is the radius of the cylinder, show that r = a cosec θ cos3 θ. Find also

the reaction at A.

4. AB, BC and AC are three uniform equal rods smoothly jointed at ends A , B and C. AB and AC are
each of weight W and the weight of BC is 2W. The frame hangs freely from C. Show that BC makes

an angle 1 4
tan

3

  
 
 

 with the horizontal. Find also the reaction at A and B.

5. Two uniform equal rods AOB and COD each of weight W are freely jointed at O, AO = CO = a, and
BO = OD = 3a. At equilibrium B and D rest on a horizontal plane and B, D are connected by an
inextensible string of length 3a. The system lies in equilibrium in a vertical plane. Show that the tension

in the string is 
2 3

9

W
 and find the reaction at O.

6. Two uniform equal rods AB and AC of weight 2W and W, respectively, are smoothly jointed at A. B
and C are fixed to a horizontal log. Find the horizontal and vertical components of the reaction at A.

If the reaction at B and C are perpendicular to each other and ˆABC =  , show that 3cot  = 35 .

7. Three uniform equal rods OA, AB and BC each of length 2a and weight W are freely jointed at A and
B. The end O is hinged to a fixed point and a horizontal force P is applied to BC at C and BC makes

an angle 45° to the horizontal. Find P in terms of W. Show that the reaction at O is  
37

2

W
. Show

also that C is at a horizontal distance 
1 1 1

2
2 10 26

a
 

  
 

 from the vertical through O.
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8. Two equal uniform rods AB, BC each of length a and weight W are smoothly jointed at B. The rod

AB is free to rotate about the point at which A is hinged. A small light ring is attached to C which is free

to slide along another fixed rod through A. The fixed rod is inclined downwards, making an angle α to

the horizontal. If the system is in equilibrium show that

(i)
1ˆtan BAC =  cot
2



(ii) The horizontal component of the reaction at B is 
3

sin 2
8

W
 .

9. Four uniform equal rods AB, BC, CD and AD each of weight W are smoothly jointed at their ends to
form a rhombus ABCD and hangs from A. The system is maintained in the shape of a square connecting
the midpoints of BC and CD by a light rod. Find the thrust in the light rod and the reaction at C.

10. Five uniform equal rods AB, BC, CD, DE and EA each of weight W are freely jointed at their ends A,

B, C, D and E to form a pentagon. The rods AB and AE make equal angles α and the rods BC and

ED make equal angles β with the vertical. The system is hanged from A and the pentagon shape is

maintained by connecting B and E by a light rod.

(i) Find the horizontal and vertical components of the reaction at C.

(ii) Show that the stress in BE is W(tan α + tan β).

(iii) Find the value of the stress when the pentagon is regular.

11. Four equal uniform rods AB, BC, CD and DA each of length 2a and weight W are smoothly jointed

at A, B, C and D. The midpoints of BC and CD are connected by a light rod of length 2a sin θ. The

frame is freely hanged from A.

(i) Show that the thrust in the light rod is 4W tan θ.

(ii) Find the reaction at B and C.

12. Four equal uniform rods AB, BC, CD and AD each of weight W are smoothly jointed at their end
points to make a square ABCD. The frame is hanged from A. The shape is maintained by joining the
midpoints of AB and BC by an inextensible string.

(i) Show that the reaction at D is horizontal and its magnitude is 
2

W

(ii) Show that the tension in the string is 4W

(iii) Show that the reaction at C is 
5

2

W
 and it makes an angle 1 1

tan
2

  
 
 

 with the vertical.

(iv) Show that the reaction at B is 
17

2

W
 and it makes an angle 1 1

tan
4

  
 
 

13. Four uniform equal rods AB, BC, CD and DA each of weight W are smoothly jointed at the ends to
form a square ABCD. The frame is suspended from A and a weight 3W is attached  to the point C.
The shape is maintained by connecting the midpoints of AB and AD with a light rod. Show that the
thrust in the light rod is 10W.
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14. Four uniform rods of equal length   and weight W are freely jointed to form a framework ABCD.

The joints A and C are connected by a light elastic string of natural length a. The framework is freely
suspended from A and takes the shape of a square. Find the modulus of elasticity of the string. Find
also the reaction at the joints B and D.

15. Six uniform equal rods each of weight W are smoothly jointed at their end points to form a hexagon
ABCDEF. The system is suspended from A and the shape is maintained by light rods BF and CE.
Show that the stress in BF is five times the stress in CE.

16. A uniform rod is cut into three parts AB, BC and CD of lengths   , 2   and    respectively. They are

smoothly jointed at B and C and rest on a fixed smooth sphere whose radius is 2   and centre  O, so
that the middle point of BC and the extremities A and D are in contact with the sphere. Show that the

reaction on the rod BC at its mid point is 
91

100

W
where W is the weight of the rod.

Find the magnitude and the direction on the rod CD at the joint C and the point whose line of action
meets OD.

17. Three uniform rods AB, BC and AC of equal length a and weight W are freely jointed together to
form a triangle ABC. The framework rests in a vertical plane on smooth supports at A and C so that
AC is horizontal and B is above AC. A mass of weight W is attached to a point D on AB where

AD = 
3

a
. Find the reaction at joint B.

18. Two uniform equal rods AB and AC each of weight W and length 2a are freely jointed at A and
placed in a vertical plane with ends B and C on a smooth horizontal table. Equilibrium is maintained
by a light inextensible string which connects C to the mid point of AB with each rod making an angle

2



 
 
 

 with the horizontal. Show that the tension T in the string is 2T = 1 9 cot
4

W
 . Find the

magnitude and the direction of the reaction at A.

19. Five uniform equal rods each of weight W are smoothly jointed at their ends to form a regular penta-
gon. CD is placed on a horizontal plane so that the frame is in a vertical plane and the shape is
maintained by joining the midpoints of BC and DE by a light rod. Find the reaction at B and show that

the tension in the light rod is 
2

cot 3cot .
5 5

W
  
  

20. Three equal uniform rods AB, BC, CD each of length 2a and weight W are smoothly jointed at B and
C, and rest with AB, CD in contact with two smooth pegs at the same level. In the position of

equilibrium AB and CD are inclined at an angle α to the vertical BC being horizontal. Prove that the

distance between the pegs is 32
2 1 sin

3
a 
 
 

 
. If β is the angle which the reaction at B makes with the

vertical, prove that tan α . tan β = 3.
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6.0  Framework

In this chapter we will consider a framework consists of light rods joined at their ends to other rods with
smooth joints.

6.1  Rigid Frame

If the shape of a frame is unaltered by external forces, then the frame in called a rigid frame.

In a frame made by light rods, the reactions at the joints will act along the rods. These reactions along the
rods are known as stresses.

If we consider a light rod AB in a frame R
A

and R
B
 are the reactions at the joints by pins.

The rod is in equilibrium under the action of
these two forces R

A
 and R

B
. Hence for the

equilibrium of the rods R
A
 and R

B
 must be

equal and act opposite along the rod.

R
A
= R

B 
= T

(i) T is tension

(ii) T is thrust

Assumptions when solving framework problems

 All the rods in the framework are light rods.

 All the rods are freely (smoothly) jointed at their ends and no couple in formed at a joint.

 The reactions at the joints (except external forces) will act along the rods. These may be thrusts or
tensions.

 All the rods in the frame are in the same vertical plane and all the forces (including the external forces)
are coplanar forces.

 External forces are applied only on joints.

6.2  Representing external forces in a light framework in equilibrium

Example 1

ABC is frame lying on A and C, carries a load W at B. By
symmetry the reactions at A and C are equal.

Example 2

ABCDE is a frame made of seven equal light rods and rests on two
pegs at A and C. It carries W at E, B and W´ at D. The external
forces P, Q will be vertical.
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Bow’s Notation

 This notation is introduced by a mathematician called Bow.

 All the external forces will be represented outside of the frame.

 The region between forces (open or closed ) is denoted by a small letter of the English alphabet or a
number.

 Each force denoted by two letters of the alphabet belongs to the two region formed by the force.

Solving problems using Bow’s notation

(i) Having represented all external forces and regions, forces of polygons have to be drawn for each
joint of the frame (These polygon of forces will be a closed figure, the vertices of the polygon being
denoted by the names of the letters of the regions.)

(ii) The values of the stresses in rods can be calculated by using trigonometric ratios and algebraic equa-
tions in the triangles and polygons obtained in the stress diagram.

(iii) By reading the names of the sides in the stress diagram, mark the directions of the stress by using
arrow marks.

(iv) While drawing force polygons, the disense has to be same for all the joints. (either clockwise or
anticlockwise)

(v) To draw a polygon of forces at a joint there may be maximum of two unknown forces.

6.3 Worked examples

Example 1

In the given figure, ABC is a triangular framework consisting of
three smoothly jointed light rods AB, BC, CA, where AB = AC
and ˆBAC=120 . The framework is in a vertical plane with AB
horizontal. It is supported at A by a smooth peg and carries loads
100 N at B and W N at C. Draw a stress diagram using Bow’s
notation and from it, calculate the stresses in the rods, distin-
guishing between tensions and thrusts  and  also  find  the  value
of  W.

Start from joint B

Joint Order            Name of Polygon

B a b c a   abc

C a c d a   bcd

AB(bc) = Tension  = 100 3 N

BC(ca) = Thrust = 200 3 N

CA(cd) = Tension =  200 3 N

W(ad) = 200 N

In this problem all the joints are taken in the anticlockwise sense.
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Example 2

ABC is a frame obtained by joining three uniform equal light rods AB,
BC and AC. B and C rest on 2 pegs at the same horizontal level. A
carries a load of 100N. Find the reaction at B and C. Draw a stress
diagram by using Bow’s notation. Hence find the stress in each rod
distinguishing between tension and thrust.

For equilibrium

Resolve the forces vertically

P + Q 100 

   P = Q 50     (symmetry)

Polygon of forces has to be drawn for joints A, B and C by naming the regions between the vertices as
a,b,c and d.

Stress diagram

This diagram is drawn by taking the region around each joint in anticlockwise
disense starting from C.

Joint C  Joint A  Joint B

Joint order Name of Polygon

C b c d a   bcd

A d c a d   acd

Tensions and thrusts are denoted by naming the regions.

T
1
 = bd = 50 tan 30° = 

50

3
 N Rod Stress Thrust Tension

T
3
 = cd = 50 sec 30° = 

100

3
 N AB

100

3
 N  -

T
2
 = ad = 50 sec 30° = 

100

3
 N BC

50

3
 N - 

AC
100

3
 N  -

Example 3

The given figure represents the framework of five equal light rods.
This frame is supported by a peg at B and a vertical force P is
applied at A. C carries a load of 100 N. Find the stresses in each
rod by drawing a stress diagram.
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For equilibrium

Resolve the forces vertically

 100  P  Q   .................. 

By taking moments about A

Am Q.2  = 100 (2 + 2 cos 60 )   ........

 and    P = 50 N , Q = 150 N

In the above diagram regions are named starting from C and the stress diagram
is drawn as follows.

Joint order Name of Polygon

C a b c a   abc

D c d c b   bcd

A d b e d   dbe

B c d e a c    acde

The force polygon is drawn starting from joint C joining the region in the
anticlockwise disense.

Rod Stress

T
1
 = bc = 100 tan 30° =

100 3

3
 N DC

100 3

3
 N Tension

T
2
 = ac =  100 sec 30° = 

200 3

3
 N BC

200 3

3
 N Thrust

T
3
 = bd = 50 cosec 60° = 

100 3

3
 N AD

100 3

3
 N Tension

T
4
 = cd  = bd  = 

100 3

3
 N BD

100 3

3
 N Thrust

T
5
 = dc  = 50 tan 30° = 

50 3

3
 N AB

50 3

3
 N Thrust

Example 4

A framework formed by four light rods AB, BC, CD and BD is
shown in the given diagram. A, D are freely jointed to a vertical
wall. Joint C carries a load of 500 N and BC remains horizontal.
Draw a stress diagram using Bow’s notation and find the stresses in
each rod distinguishing between tensions and thrusts.
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At joint C one force is known and two forces unknown. Draw the stress diagram starting from joint C.

Joint order Name of Polygon

C a b c a   abc

B a c d a   acd

Rod Stress Thrust Tension

bc = 500 sec 60° = 1 000 N DC 1 000 N - 

ac = 500 tan 60° = 500 3 N BC 500 3 N  -

cd = ( 500 3 N ) sin 30° = 250 3 N BD 250 3 N  -

ad = 500 3 N  cos 30°   =  750 N AB 750 N  -

Example 5

The given figure show a framework of six light rods smoothly jointed at
C, D and E. A and B are smoothly jointed to a vertical wall and D
carries a load of 150N. Draw a stress diagram using Bow’s notation
and find the stresses in each rod distinguishing between thrusts and
tensions.

D is the joint with one known and two unknown forces

So start to draw triangle of forces from joint D

Joint order Name of Polygon

D p q r p   pqr

E p r s p   prs

C r q t s r    rqts
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Rod Stress Thrust Tension

AC = qt = 75 3 + 25 3 = 100 3 N AC 100 3 N - 

CD = qr = 75 sec 30° = 50 3 N CD 50 3 N  -

DE = pr = qr = 50 3 N DE 50 3 N  -

CE = sr = 100 3 N CE 100 3 N - 

BC = st = 50 3 N BC 50 3 N - 

BE = ps = 150 3 N CE 150 3 N - 

Example 6

Five rods AB, BC, CD, DA and AC are smoothly jointed at their ends to form a framework as shown in

the figure. ˆˆ ˆABC = ADC = DAC = 30 and ˆBAC = 60 .  The framework is smoothly hinged at D and carries

a weight 10 3  N at B. The framework is held in a vertical plane with AB horizontal by a horizontal force
P at A.

(i) Find the value of P

(ii) Find the magnitude and direction of the reaction at D.

(iii) Using Bow’s notation, draw a stress diagram for the frame-
work and find the stresses in all the rods, distinguishing be-
tween tensions and thrusts.

(i) For equilibrium

Take moment about D

Dm P. AD - 10 3 AB = 0
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but   AD = 2 AC cos 30°

= 2 AB cos 60° cos 30°

AD =
3

AB
2

   P.
3

2
AB = 10 3 AB

   P = 20 N

Let R be the reaction at D and  be the angle that R makes with the horizontal

Resolving vertically

R sin 10 3 

Resolving horizontally

R cos P 20 N  

R =  
2

210 3 20 10 7 

10 3 3
tan

20 2
    ; 1 3

tan
2

 

Since the system is in equilibrium under three forces the reaction R should also pass through B.

Start from joint B in the anticlockwise direction.

Joint order     Name of Polygon

B a b e a   abd

C a e d a   aed

Rod Stress Magnitude

AB Tension 30 N

BC Thrust 20 3  N

AC Thrust 20 N

DC Thrust 40 N

AD Tension 10 3  N

Example 7

The given figure shows a crane composed of four freely
jointed rods AB, BC, CD and BD. The rod BC is hori-
zontal while the rod BD is vertical. The crane is fixed to
the horizontal ground at A and D and there is a load of
1 000 N hanging at C. Use Bow’s notation to find the
forces in the rods, distinguishing between tensions and
thrusts.

10 3 sec60
20 3

ae 


10 3 tan 60
30

be 


20 3 sec30
40

ad 


tan 30
20

ed ae


sin 60
10 3

cd ed


300

>



26

1000

>

> >

Start with joint C in anticlockwise

Joint order     Name of Polygon

C 1 2 3 1   123

B 3 2 4 3   324

AB = km= 1000 6  N

BC = kl = 
01000 cot 30 1000 3 N

CD = lj = 1000 cosec 30 2 000 N 

BD = ml= kl= P. cos 30 10 3 . 2 0   

 
2

2

P 40 N

 P = R cos  = 40 N

R sin 10 3 N

R = 40 + 10 3 N

R = 10 19 N





 



 

Rod Stress Thrust Tension

AB 1000 6  N - 

BC 1000 3  N - 

CD 2 000  N  -

BD 1000 3  N  -

Example 8

The given figure shows a framework consisting of seven light
rods AB, BC, CD, DE, EA, EB and BD smoothly jointed at
their extremities. The frame smoothly jointed at C and carries a

load 10 3  N at A. A  horizontal force P at E keeps ED horizontal
and the frame is in a vertical plane.

(i) Find the value of P at E

(ii) Find the magnitude and the direction of the reaction at C

(iii) Draw a stress diagram using Bow’s notation and hence find the stresses in each rod distinguishing
between tensions and thrusts.

(iv) From stres diagram varify reaction at C

For equilibrium

Take moment about C

0P. cos30 10 3.2 0   n ,where  is length of a rod.

P 40N 
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Resolve the forces in the horizontal direction

 P = Rcos  = 40N

Resolve vertically

R sin 10 3N 

 
2

2R = 40 + 10 3

R = 10 19N

-110 3 3
tan      = tan

40 4
 

 
    

 

Stress diagram

Start from joint A clockwise

Joint order Name of Polygon

A c a d c   cad

E c d e b c    cdeb

D b e f b   bef

Join  af , bf Rod Stress

AB = ad = 10 3 tan 30 10 N  AB 10 N Thrust

AE = cd = 10 3 sec 30 20 N  BC 30 N Thrust

cd = de = 20 N CD 20 N Thrust

AE = BE = 20 N DE 20 N Thrust

bf = de = ef = df = 20 N EA 20 N Tension

CD = DE = BD = 20 N EB 20 N Thrust

 
2

2 2

Reaction at c denoted by ab

ab 10 3 40

ab = 10 19

 
DB 20 N Tension

Example 9

A framework of seven freely jointed light rods is in the form of a
regular pentagon ABCDE and the diagonals AC and BD. The frame-
work is in the vertical plane with the lowest rod CD horizontal and
is supported at C and D by two upward vertical forces of magni-
tude P and Q and weights 2 N, 4 N, 2 N are suspended at B, A and
E respectively. Draw a stress diagram for this framework using
Bow’s notation. Hence determine the stresses in all seven rods, dis-
tinguishing between tensions and thrusts. Give the answers in terms

of cos
10

n
 where n is a positive integer..

>
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For the equilibrium of the system

Resolve the forces vertically



P + Q = 8 N

P = (symmetry)

P = Q = 4 N

a

The system is symmetrical about the vertical line through A.

Start from the joint B and move in the clockwise direction.

n = 18°  ( say ) 
10




de = ec = ca = ab = 2 N

let gc = x

Then pc = x tan 4n°

AB(bc) = Tension  = 100 3 N

BC(ca) = Thrust = 200 3 N

CA(cd) = Tension  = 200 3 N

W(ad) = 200 N

First draw a vertical line and denote the vertical forces, in clockwise sense as

ba, ae, ed, dc, ca

10


  = 180

     Joint    Order Polygon

B bahb   bah

E ed fe   edf

A haefgh      haefg

C bhach      bhgc

In abh , Using sine rule

2

sin sin 4 sin 3

ah bh

  
 

sin
2

sin 4
ah




  ,

sin 3
2

sin 4
bh






b

h

k

f

d

e

g

a

c

3



4

3



2

2


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  ‘s abh and def are concruent

2sin

sin 4
af ah




  

2sin 3

sin 4
df bh




  

In   ghk

sin 4 cos3hk gh ac ah   

2 sin
2 .cos3

sin 4 sin 4
gh




 
 

sin 3 cos 4gc ah gh  

cos 4 sin 3gc gh ah  

Rod stress Tension Thrust

AB ah  -

BC bh - 

AE ah  -

ED bh - 

AC gh - 

AD gh - 

DC gc  -
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Example 10

The given frame consists of five light rods AB, AD, BC, BD and
CD smoothly jointed at their extremities while the frame carries
120 N and 60 N at B and A respectively, the vertical forces P
Newton and Q Newton applied at C and D to make AB and
CD horizontal. Draw a stress diagram using Bow’s notation and
hence find the stresses in all five rods distinguishing between thrusts
and tensions.

For equilibrium

Resolving vertically

P Q 120 60 0    

   P Q = 180N

Taking moments about D

P. 2 60. cos60 120. cos60 = 0     

2P = 30 + 180 

P = 105N

Q= 180 105 = 75N 

Stress diagram

Start from joint C and move anticlockwise

C  B  A

Step I : Cm Step II : Bm Step III : Am

AB = af = 60 tan 30° = 20 3 N

BC = ed = 105 sec 30° = 70 3 N

CD = ec = 105 tan 30° = 35 3 N

AD = bf = 60 sec 30° = 40 3 N

BD = ef = 15 sec 30° = 10 3 N

Rod Stress

AB 20 3 N Tension

BC 70 3 N Tension

CD 35 3 N Thrust

AD 40 3 N Tension

BD 10 3 N Tension
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6.4  Exercises

1.

The figure represents the framework of a roof whose weight may be regarded as distributed in the
manner shown above.

i. Find the reaction at A and B.

ii. Draw the stress diagram by using Bow’s notation and find the stress in each rod, distinguishing
between tensions and thrusts.

2.

The above figure shows a framework made by seven light rods. The frame is hinged at A to a fixed
point and kept in position by a horizontal force P at B. Draw a stress diagram using Bow’s notation
and find the stress in each rod distinguishing between tensions and thrusts.

3.

The above framework consists of nine smoothly jointed light rods, smoothly hinged to a fixed point at
A, kept in equilibrium by a horizontal force P at B and loaded with 20 W each at C and D.

i. Find P and the reaction at A.

ii. Draw the stress diagram using Bow’s notation and find the stress in each rod, distinguishing
between tensions and compressions.
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4. The framework consists of four light rods AB, BC,

CD and DB freely jointed at B, C, D and attached to
a vertical wall at A, and D loaded with WN at C.
Draw a stress diagram using Bow’s notation and find
the stress in each rod, distinguishing between tensions
and thrusts.

5. ABCDEF is a framework which has freely jointed rods
AB, BC, CD, DE, AE, BE and CE such that

πˆ ˆˆ ˆ ˆ ˆEBC=ECB=ABE=DCE=AEB=DEC=
6

. The

framework is supported at B and C such that BC is
horizontal, and loaded 60 N, 40 N at A and D
respectively. Draw a stress diagram using Bow’s
notation and find the stress in each rod, distinguishing
thrusts and tensions.

6. The framework in the figure is formed by using light
bars according to the diagram. All triangles are right
angular and isosceles. The system is on support at A
and B such that ACB horizontal. The framework

carries loads of 40 N, 400 N and 240 N at C, D and
E respectively. Draw stress diagram using Bow’s

notation and find the stresses in the bars distinguishing
tensions and thrusts.

7. The figure shows a framework consisting freely jointed four light
bars AD, BD, BC and CD. It is hinged freely to a vertical wall at A
and B. C carries a load of 2W. By using stress diagram find the
reactions at A and B. Hence find the stresses in the rods distinguishing
tensions and thrusts.

8. The figure shows a framework  consisting nine light
rods freely jointed at A, B, C, D, E and F. The frame
carries loads of 6W and 9W at B and C respectively.
It is supported by vertical forces R and S at A and D
respectively. Draw a stress diagram and find the
stresses in the rods distinguishing between tensions
and thrusts.

6



6



6



6

6





33

9. A freely jointed framework consisting of five light rods

is shown in the figure. Joint B carries a load of 900N.
The framework is in equilibrium such as AD is verti-
cal by means of forces P and (P, Q) acting on A and
D respectively (P is horizontal and Q is vertical). Find
the magnitudes of forces P and Q. Draw the stress
diagram using Bow’s notation and find the stress in
each rod, distinguishing tensions and thrusts.

10. Five light rods are freely jointed to form the framework
shown in the above figure. The framework is in
equilibrium in a vertical plane with joint  A freely hinged
to a fixed point. AB  is vertical, BC is horizontal,

ˆ 90ADB   and ˆˆ 30DBC DCB   . A load of 100 N
hangs at C and a horizontal force P acts at B in the
direction of CB.

Find P and  obtain the horizontal and vertical compo-
nents of the reaction on the hinge at A. Draw a stress
diagram for the framework using Bow’s notation.
Hence  determine the stresses in all five rods distin-
guishing tensions and thrusts.

11. The given framework consists freely jointed eight light
rods at A, B, C, D and E. The joints A and B are on
vertical supports P at each joint. The framework carries
equal loads of 100 kg at points C and D. AB is
horizontal and AE=BE=AD=BC. Find the value of P.
Assuming the thrust in C as X kg draw a stress dia-
gram for the framework. If the tension on AB is Y kg,
using the geometry of the stress diagram, prove that

100 ( 3 1)Xy    . Explain why the real values of x and

y cannot be calculated simultaneously. Find the stress
in every rod if X = Y.

12. The given figure represents a framework which is
formed by seven light rods. Ends  A, B, C, D, E
are freely jointed. This framework carries loads
W and 2W at joints C and D, and is supported at
B and E such that BE is horizontal. Draw a stress
diagram using Bow’s notation and find the stress
in every rod distinguishing tensions and thrusts.
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13. The framework consisting seven freely jointed light rods is

placed on two supports at A and C such as the framework
carries loads 4W and W at D and E respectively. Find the
reactions at A and C. Find the stresses in each and every
rod using a stress diagram, distinguishing between them
compressions and tensions.

14. The given framework is a rhombus formed by freely jointed five light
rods. It is hung from A by means of equal strings OB, OD, and OA is a
vertical rod freely jointed at A. The diagonal AC of the rhombus is

vertical and ˆˆABC = BOD = 60 .  When C carries a load W, find the
stresses in each rod and also the tensions in the strings by using a stress
diagram. Name the rods which are under tension.

15. The figure shows a framework formed by freely
jointed light bars. DA is vertical. The frame-
work is supported at C and E. It carries loads
3W, 3W and W at joints A, B and F, respec-
tively. Find the reactions at C and E. Draw a
stress diagram using Bow’s notation and find
the stresses in each rod. Distinguish thrusts and
tensions.

16. The given figure represents a framework of light bars loaded
at joints B, F, D as indicated. The bars AC and CE are
horizontal and each equal to 10 m and CF = 8 m. Also the
lengths AB = BC = CD = DE and BF = FD. The frame rests
on two smooth pegs at A and E. Calculate the reactions at A
and E assuming that they are vertical. Draw a stress and find
the stresses in the rods distinguishing between tensions and
thrusts.

17. The given framework formed by nine equal light bars, carries
loads as shown in the figure. The framework is at rest on B and
C on supports such that the system is in a vertical plane.

Find the reaction at B and C. Draw a stress diagram by using
Bow’s notation. Hence calculate the stresses in each rod
distinguishing tensions and thrusts.
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18. The framework of a bridge ABCDE which is formed

by seven light equal rods is shown in the figure. The
joints A and C are on supports which are in same
horizontal level and the framework is in a vertical
plane and B carries a load W. Draw a stress diagram
using Bow’s notation. Hence find the stress in each
rod distinguishing thrusts and tensions.

19. The framework consisting light rods AB, BC,
CA, CD and DA are freely jointed at their
extremities is placed in a vertical plane with
AB horizontal and AC vertical, AB = a,

2ˆ ˆBCD = BAD = 
3


 and ˆABC = 

3


. The

framework  supports  a vertical load W at D
and the equilibrium is maintained by two
vertical forces P, Q at A and B respectively.

(i) Find P and Q in terms of W

(ii) Draw a stress diagram for this framework
using Bow’s notation.

Hence determine the stresses in the five
bars distinguishing thrusts and tensions.

20.

The above framework is made by seven light rods AB, BC, AD, BD, BE, CE and DE where

AD = BD = BE = CE =  . The frame is hinged at E, kept in equilibrium by a force P applied at A,
with loads 100 kg at C and 10 kg at D.

(i) Find the vertical and horizontal components of the reaction at E.

(ii) Find the value of P.

(iii) Draw a stress diagram using Bow’s notation and hence find stresses in each rod distinguishing
tensions and thrusts.
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7.0  Friction

7.1 Introduction

When two bodies are in contact with each other the action at the point of contact of the bodies to prevent
sliding of one on another is called frictional force. The frictional force on two bodies are equal in magnitude
and opposite in direction.

When a horizontal force P is applied on a body, if it does not move the reason is that the force P is
suppressed by an equal and opposite force. This force is called frictional force and if this force is F, then
 F = P.

When P is gradually increased, at some stage the body will start to move. This shows that the frictional
force cannot increase beyond a limit and this is called limiting frictional force.

At limiting equilibrium,

Coefficient of friction = 
Limiting frictional force 

  =  
Normal Reaction

 , where    is the coefficient of friction

In equilibrium 
F

    
R



At limiting equilibrium   
LF

  =  
R

 .  ( LF - Limiting frictional force)

7.2 Laws of Friction

1. When two bodies are in contact with each other, the direction of the frictional force at the point of
contact acting on the body by the other is opposite to the direction in which the body tends to move.

2. When the bodies are in equilibrium the magnitude of the frictional force is sufficient only to prevent the
motion of the body. Only a certain amount of friction can be exerted called limiting friction.

3. The ratio of the limiting frictional force and the normal reaction is called the coefficient of friction and
depends on the matter of which the body is composed.

4. Until the normal reaction remains unchanged, the limiting frictional force does not depend on the area
and the shape of the surfaces.

5. When the motion is started, the direction of the frictional force is opposite to the direction of the
motion. The frictional force after the motion is started is slightly less than the limiting frictional force
before the motion.

6. The frictional force exerted by the surface on a moving body does not depend on the velocity of the
body.
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Angle of Friction

When two bodies are in contact with each other the total reaction at the point of contact is the resultant of

the normal reaction and the frictional force. At limiting equilibrium, the angle   which this resultant makes
with the normal reaction is called the angle of friction.

L

L

F
tanλ

R

F
  =  μ

R

tanλ  =  μ  

  =  

Cone of Friction

When a body is in contact with a rough surface and with the
common normal at the point of contact as axes, we describe a

right circular cone whose semi vertical angle is  .

This cone is defined as cone of friction. The resultant reaction
must always be within or on the surface of the cone whatever the
direction the body tends to move.

• Equilibrium of a particle on a rough horizontal surface when an external force
acts

F
  =  tan θ

R

F
    

R

 tan θ   

tan θ    tan λ

θ    λ













• Equilibrium of a particle on a rough inclined plane

Resolving  parallel to the plane

  F  -   sin   = 0   ;  F  =   sinW W 

Resolving perpendicular to the plane

  R  -   cos   = 0  ;  R  =   cos  W W 
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F
For equilibrium            μ

R

W sin α
    tan λ

W cos α

tan α    tan λ

α    λ









7.3 Worked examples

Example 1

A body of weight 9 N which is placed on a rough horizontal plane is pulled by a string inclined at an angle
30° to the horizontal. If it just begins to move when the tension in the string is 6 N, find the coefficient of
friction between the body and the plane.

Resolving horizontally

  6 cos30 - F  =  0   ;   F  =  3 3  

Resolving vertically

  R + 6 sin 30  - 9  =  0

                        R =  6

 

For limiting equilibrium

      

F
 μ  = 

R

3 3 3
= = 

6 2

Example 2

A body is placed on a plane of inclination 45° to the horizontal. The coefficient of friction between the body

and the plane is 
1

3
. A horizontal force 6 N is necessary to prevent the body from sliding down the plane.

(a) Find the weight of the body.

(b) If the motion of the body up the plane starts when the force is increased gradually find the value of the
force.

(a)
1

μ=
3

Resolving  parallel to the plane

 - 6
  F + 6 cos 45  -  sin 45   = 0   ;  F = 

2

W
W 

Resolving perpendicular to the plane

 + 6
 R - 6 sin 45  -  cos 45   = 0    ;  R = 

2

W
W 
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For limiting equilibrium

 - 6

F 12   =  μ ;      =  
 + 6R 3

2

 - 6 1
 = ;             = 12 N

 + 6 3

W

W

W
W

W

(b)

Resolving  parallel to the plane

P - 12
  F - P cos 45  + 12 sin 45  = 0 ; F = 

2
 

Resolving perpendicular to the plane

P + 12
  R - P sin 45  - 12 cos 45  = 0 ; R = 

2
 

In limiting equilibrium

F
 = μ

R

P - 12

12  = 
P + 12 3

2

P - 12 1
=  ; P = 24 N

P +12 3

Equilibrium of a particle on a rough plane

• The minimum force required to move a particle on a rough horizontal plane

Let the weight of the particle be W and the angle of friction .

Forces acting on the particle :

(a) Weight W

(b) Frictional force F

(c) Normal reaction R

(d) Required force P at an angle  with the horizontal

For equilibrium of the particle

Resolving horizontally

      P cos θ - F = 0 ; F = P cos θ

Resolving vertically

         R + P sin θ -  = 0 ; R =  - P sin θW W

R
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For limiting equilibrium
F

               = μ = tan λ
R

P cos θ sin λ
  = 

 - P sin θ cos λ

 P (cos θ cos λ + sin θ sin λ) =  sin λ

                        P cos (θ-λ) =  sin λ

 sin λ
                                     P  =

cos (θ-λ)

P to be mini

W

W

W

W

min

mum cos (θ - λ) = 1.   This means  θ = λ

θ = λ and P =  sin λW

• When the inclination of the plane is less than the angle of friction, the least
force required to move the particle down the plane

Let  be the inclination of the plane. Since , the particle will be in equilibrium.

Let the force applied be P at an angle  with the plane

For equilibrium of the particle,

Resolving parallel to the plane,

 P cos θ +  sin α - F = 0W

Resolving perpendicular to the plane,

R - cos α + P sin θ = 0  W

At limiting equilibrium

F
 = μ = tan λ

R

P cos θ +  sin α sin λ
=

W cos α - P sin θ cos λ

P(cos θ cos λ + sin θ sin λ) = (sin λ cos α - cos λ sin α)

                   P cos (θ-λ) = sin (λ- α)

sin (λ -α)
                                 P =

cos (θ -λ)

P to be 

W

W

W

W

minimum cos (θ -λ) = 1 ;

i.e. θ = λ and the least value of  P =  sin (λ -α)W
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• When the inclination of the plane is less than the angle of friction, the least
force required to move the particle up the plane

Let the inclination be . Since , the particle will be in equilibrium.

Let the force applied be P at an angle  with the plane.

For equilibrium,

Resolving parallel to the plane,

P cos θ - F -  sin α = 0W

Resolving perpendicular to the plane,

R + P sin θ -  cos α = 0W

At limiting equilibrium

• When the inclination of the plane is greater than the angle of friction, the least
force required to move the particle upwards on the plane

Since , the particle will slide down on the plane.

For equilibrium,

Resolving parallel to the plane,

P cos θ - F -  sin α = 0W

Resolving perpendicular to the plane,

R + P sin θ -  cos α = 0W

At limiting equilibrium

F
 = μ = tan λ

R

P cos θ -  sin α sin λ
=

 cos α - P sin θ cos λ

P (cos θ cos λ + sin θ sin λ) =  (sin α cos λ + cos α sin λ)

                     P cos (θ - λ) =  sin (α + λ)

 sin (α + λ)
                                   P = 

cos (θ - λ)

W

W

W

W

W

P to be minimum cos (θ - λ) = 1 ;

i.e.  θ = λ and the least value of  P =  sin (α + λ)W

F
 = μ = tan λ

R

P cos θ -  sin α sin λ
=

 cos α - P sin θ cos λ

P (cos θ cos λ + sin θ sin λ) =  (sin α cos λ + cos α sin λ)

                     P cos (θ - λ) =  sin (α + λ)

 sin (α + λ)
                                   P = 

cos (θ - λ)

W

W

W

W

W

P to be minimum cos (θ - λ) = 1 ;

i.e.  θ = λ and the least value of  P =  sin (α + λ)W
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• When the inclination of the plane is greater than the angle of friction, the least
force required to support the particle

Let   be the inclination of the plane to the horizontal. Since   , the particle will slide down on the
plane. We have to find the least force to support.

The particle is on the point of moving down the plane.Therefore the frictional force F acts up the plane,

For equilibrium of the particle,

Resolving parallel to the plane,

F + P cos θ -  sin α = 0W

Resolving perpendicular to the plane,

R + P sin θ -  cos α = 0W

At limiting equilibrium,

Equilibrium of rigid bodies on rough planes

Example 3

A uniform rod of length 2a and weight W rests one end against a smooth wall and the other end on a rough
horizontal floor, the coefficient of friction being  . If the rod is on the point of slipping show that inclination

of the rod to the horizontal is 1 1

2
cottan   

 
 

 and find the reaction at the wall and on the ground, where 

is the angle of friction.

Method I

Let   be the angle the rod makes with the horizontal.

For equilibrium of the rod AB,

Resolving horizontally,

F - S = 0 ; F = S       -------  

Resolving vertically,

R - W = 0 ; R = W    --------  

F
= m = tan

R

 sin - P cos sin
=

P cos -  sin cos

W (sin cos - cos sin ) = P (cos cos  - sin sin )

                   P cos ( + ) =  sin ( - )

 sin ( - )
                                  P =

cos ( + )

P to be 

W

W

W

W



  

  

       

   

 

 

minimum cos ( + ) = 1 ;

i .e.   = -   and the least value of  P =  sin ( - )

        = -   means P acts along LM and the least value of  P is sin ( - )

W

W

 

   

   
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Taking moments about B

B  = 0,   S.2 in θ - cos θ = 0

S = cot θ   --------- 
2

From  and , F = S = cot θ
2

a s Wa

W

W



 

At limiting equilibrium

Method II

The reaction S at A and weight W of the rod meet at O.

For equilibrium of the rod AB, the resultant R´, of F and  R passes through O.

Since the rod is at limiting equilibrium, the angle between R and R´ is ( angle of friction)

Applying cot rule for triangle AOB

1

F
 = μ

R

 cot θ 1
×  = tan λ

2

           cot θ 2 tan λ

1
           tan θ cot λ

2

1
                 θ tan cot

2

                 S = .2 tan λ
2

                    = tan λ

W

W

W

W







 
  

 

   

-1

 cot 90 -    cot  -   cot 90

                ( ) tan    cot

                        2 tan   cot

1
                         tan  cot

2

1
  tan cot

2

Reaction at the wall is   S  F 

BG GA BG GA

a a a

W

 

 

 

 

 

   

 





 
  

 

 

 

 

2 2

2 2

2 2

cot      ( from )
2

  tan

Reaction at the ground is   

  tan

 1 tan

  sec

W

F R

W W

W

W













 

 

 




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Example 4

A uniform rod rests with one end on a rough ground and the other end on a rough wall. The vertical plane

containing the rod is perpendicular to the wall. The coefficient of friction at the wall is 1 and ground is 2 .

If the rod is on the point of slipping at both ends, show that the angle the rod makes with horizontal is

1 1 2

2

1
tan

2

 


  
 
 

.

(i) The resultant of F
1
 and R

1
 is S

1
.

(ii) The resultant of F
2
 and R

2
 is S

2
.

(iii) Weight of the rod is W

For equilibrium of the rod the three forces S
1,
 S

2 
and W meet at a point O.

Let 1 1tan  and 2 2tan 

The angle between R
1
 and S

1
 is 1

The angle between R
2
 and S

2
 is 2

Applying Cot Rule for triangle AOB

Example 5

A uniform rod AB of weight W and length 2a is kept in equilibrium with the end A in contact with a rough
vertical wall supported by a light inextensible string of equal length 2a connecting the other end B to a point

C on the wall vertically above A. The rod is inclined at an angle   to the upward vertical and lies in a

vertical plane perpendicular to the wall.

Find the tension in the string and show that 1cot
3


   
  

 
, where   is the coefficient of friction.

The tension T in the string at B and the weight of the rod W meet at O.

Therefore, for equilibrium of the rod the resultant R1 of F and R at A passes through O.

  2 1

1

2

1 2

2

1 2

2

1 2

2

-1 1 2

2

AG + GB cot (90  - α) = AG cot λ  - GB cot (90  - λ )

1
(1+1) tan α =  -  tan λ

tan λ

1 - tan λ tan λ
2 tan α = 

tan λ

1 - tan λ tan λ
tan α = 

2 tan λ

1 - μ μ
tan α = 

2μ

1 - μ μ
α = tan

2μ

 

 
 
 

 
 
 

S
1

R
2

S
2

F
2

R
1

W

F
1
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ˆ ˆ ˆCAB = θ,  since BA = BC,  BAC  = BCA = 

ˆ                                        ABC = 180 - 2





For equilibrium of AB,

A       = 0m

T. AB sin (180  - 2θ) - .AG sin θ = 0

T.2 sin 2θ  = . sin θ

               T = 
4 cos θ

sec θ
                  = 

4

W

a W a

W

W



For equilibrium of AB,

Resolving horizontally,

R - T cos (90  - θ) = 0

 tan θ
R = T sin θ = 

4

W

 

Resolving vertically,

  T cos θ + F -  = 0

F =  - T cos θ

3
=  -  = 

4 4

W

W

W W
W



For equilibrium,

Example 6

A ladder whose centre of gravity is at a distance b from the foot, stands on a rough horizontal ground and
leans in equilibrium against a rough cylindrical pipe of radius r fixed on the ground. The ladder projects
beyond the point of contact with the pipe and is perpendicular to the axis of the pipe. Let  be the angle of
friction at both points where friction acts, and 2(such that b < cot ), be the inclination of the ladder to
the horizontal. A load of weight equal to that of the ladder is suspended from a point at a distance x
measured along the ladder from its foot. The ladder is in limiting equilibrium at both points where friction
acts. Show that (b + x) sin2 cos = r sin cos .

-1

F
  μ

R

3 4
×      μ

4 tan θ

3 cot θ    μ

μ
cot θ  

3

μ
θ   cot

3

W

W









 
  

 
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The resultant S
1
 of the forces F

1
 and R

1
 at C,

The resultant S
2
 of the forces F

2
 and R

2
 at A and the resultant of

weight of the ladder W and the weight W at meet at O.

Since equilibrium is limiting

(i) the angle between R
1
 and S

1
 is 

(ii) the angle between R
2
 and S

2
 is 

AM = b, AC = cotr 

AL = x AM = b ,

Therefore AG = AL + LG   = 
2 2

b x b x
x

 
 

Now AG = 
2

b x
and GC = cot

2

b x
r 

 
  
 

Appling Cot Rule for the triangle ACO,

   

   

AG + GC cot (90 2 ) GC cot 90 2 AG cot (90 )

AC tan 2 GC tan ( 2 ) AG tan

cot . tan 2 cot tan ( 2 ) tan
2 2

cot tan 2 tan ( 2 ) tan tan ( 2 )
2

sin 2 sin ( 2
cot

cos 2

b x b x
r r

b x
r

r

   

   

     

      

  




       

  

      
       

    

 
     

 




   

) sin sin ( 2 )

cos ( 2 ) 2 cos cos ( 2 )

sin 2 ( 2 ) sin ( 2 )cos

sin cos 2 .cos ( 2 ) 2 cos . cos ( 2 )

cos sin ( ) sin ( 2 )

sin cos 2 2 cos

cos . sin

s

b x

b x
r

b x
r

r

  

    

     

      

  

  

 

     
          

       
    

     

   
   

 

2

2 sin cos

in . cos 2 2 cos

sin cos ( ) sin .cos 2

b x

r b x

 

  

   

 
  
 

 
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Example 7

A particle A of weight w, resting on a rough horizontal floor is attached
to one end of a light inextensible string wound round a right circular
cylinder of radius a and weight W, that rests on the floor, touching it
along a generator through a point B. The other end of the string is
fastened to the cylinder. The vertical plane through the string is
perpendicular to the axis of the cylinder, passes through the centre of
gravity of the cylinder and intersects the floor along AB, as shown in
the figure.

The string is just taut and makes an angle   with AB. The floor is rough enough to prevent the cylinder
from moving at B. A couple of moment G is applied to the cylinder so that the particle is in limiting
equilibrium. If   is the coefficient of friction between the particle and floor, show that the tension in the

string is 
(cos sin )

W

  
.

By taking moments about B, find the value of G.

For equilibrium of the system,

Resolving horizontally

2 1

2 1

 F  - F  = 0

      F = F



Resolving vertically

1 2

1 2

   R + R -  -  = 0

      R + R  = +

W w

W w



For equilibrium of the particle,

Resolving horizontally,

1 1T cos - F 0 ; F T cos    

Resolving vertically,

1 1   R + T sin α -  = 0  ; R  =  - T sin αw w

At limiting equilibrium,

For equilibrium of the cylinder,

1

1

F
= μ

R

T cos α
 = μ ; T (cos α+μ sin α) = μ

 - T sin α

μ
T = 

cos α +μ sin α

w
w

w

B        T(  + cos α) - G = 0

                                 G = T. (1+cos α)

(1+cos )
                                     = 

cos sin

a a

a

wa 

  

m
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Example 8

A uniform rod of length a and weight W rests in a vertical plane inside a fixed rough hemispherical bowl of

radius a. The rod is in limiting equilibrium inclined at an angle   to the horizontal, and the coefficient of

friction is  3  . Show that the reaction at the lower end of the rod is 
cos

3

W 


 and find the reaction

at the upper end. Hence show that 
2

4
tan

3








.

Since ther rod is in limiting equilibrium,

1 2F  = μR   and    F  = μS

For equilibrium of AB,  Taking moment about B

 

B      -R.  sin 60  + μR .  sin 30  + . cos θ = 0
2

3 1 1
- R  + μR.  + . cos θ = 0

2 2 2

cos θ
R 3 - μ  = cos θ ; R = ---------(1)

3 - μ

a
a a w

w

w
w

 m

Taking moment about A

1 2

2

2

O       F .  + F .  - w cosθ - cos (60+θ)  = 0
2

1 1 3
μ(R+S) = cos θ - cos θ + sin θ

2 2 2

cos θ cos θ 3
μ +  = w sin θ

23-μ 3+μ

μ cos θ × 2 3 3
 = sin θ

3-μ 2

4μ
tan θ = 

3-μ

a
a a a

w

w w

w

 
 
 

 
  
 

 
 
 

m

 

a
A       S. sin 60  + μS. sin 30  - w . cos θ = 0

2

3S μS cos θ
                                           +  = 

2 2 2

w cos θ
                                                         S =            ---------------(

3+μ

a a

w

 m

2)

Taking moment about O
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Example 9

A uniform solid hemisphere of weight W is placed with its curved surface on a rough plane inclined at an
angle   to the horizontal. When a small weight w is attached to a point on the circumference of its plane
surface, the plane surface becomes horizontal. Show that if   is the coefficient of friction, then

tan
( 2 )

w

W W w
  


.

Centre of gravity of the hemisphere is at G and OG =
3

8
a .

The forces F and R act at C on the hemisphere.

The resultant of W and w also should pass through C.

Taking moments about N,

.ON - . BN = 0

.ON =  (  - ON)

( - ) . ON = .

.
ON = 

+ 

W w

W w a

W w w a

w a

W w

For equilibrium of the system the resultant of F and R must be equal to (W+w) in magnitude and opposite
in direction.

Since the equilibrium is limiting, ˆOCN 

2 2

2 2
2

2

2

ON ON
tan λ =   = 

CN - ON

.

+= 

-
( + )

= 
+2

= 
( +2 )

= tan α  (since λ = α)

a

w a

W w

w a
a

W w

w

W Ww

w

W W w

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Example 10

Two uniform rods AB and BC of equal length and of weights W and w (W > w) respectively are freely

jointed at B. The rods rest in equilibrium in a vertical plane with  ˆABC
2


  and the ends A and C on a

rough horizontal ground. If   is the coefficient of friction between the rods and the ground, show that the

least possible value of   is 
3

W w

W w




 in order to preserve the equilibrium. If 

3

W w

W w






, prove that the

slipping is about to occur at C but not at A.

For equilibrium of the system,

1 2 1 2   F  - F  = 0     ;      F = F   (= F, say)

     R + S -  -  = 0

        R + S =  +                 - - - - - - - - - - - - - - - - - (1)

W w

W w





A       0

S. 4  cos 45  - . 3  cos 45  -  cos 45  = 0

+3 3 +
S =       and     R = 

4 4

a w a Wa

W w W w



  

m

For equilibrium of AB, Bm = 0

1

1

1

1 2

F .2  sin 45  +  cos 45  - R .2  cos 45  = 0

2F  + W - 2R  = 0

W
F   = R - 

2

3W + w W
=  - 

4 2

 
4

+
F  =  F  = F = 

4

a Wa a

W w

W w

  




For equilibrium of the system

1 2

1

2

F F
    μ    ,         μ

R S

W+w
F W+w4 =  =      μ

3W+wR 3W+w
4

W+w
F W+w4 =  =      μ

W+3wS W+3w
4

 




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0
1F

R
2F

S

Example 11

A uniform plank AB of length 4   and weight W rests with one end A on level  ground and leans against a

cylinder of radius  such that the point of contact between the plank and the cylinder is at a distance 3 
from A. The cylinder is uniform and of weight W and rests on the ground with its axis perpendicular to the
vertical plane containing the plank. Find the frictional force at each point of contact and show that for

equilibrium to be possible 
8

21
  , where  is the coefficient of friction.

For equilibrium of the system,

Resolving horizontally

1 2 1 2F F 0    ;   F F   

Resolving vertically,

1 2R R 2 0W   

1 2R R 2W  ................................. 

For equilibrium of the sphere,

Om      2 3 2 3F . F . 0  ;  F  = Fa a 

Hence  
1 2 3F  = F  =  F ................................... 

For equilibrium of the rod AB,

Am    3R .3 .2 cos 2 0W   

3

2 cos 2 8
R

3 15

W W
  ................................ 

For equilibrium of the system,

Am    2R .3 .3 .2 cos 2 0W W     

2

4
3R 3 2

5
W W  

2 1

23 7
R  ; From   R

15 15

W W
  ...................

3 3 -
Now,      R - S =  -     > 0

4 4 2

         i.e.    R > S  

1 1
                  R > S ( > 0 )   <       

R S

F F
                                         < 

R S

                                       

W w W w W w 






1 2

1 2

2

F F
  < 

R S

F F
For equilibrium to be possible,      μ ,         μ

R S

F
The least possible value is             =  

S 3

If    , slipping first occurs at C
3

W w

W w

W w

W w




 










>

>

>

<

>

>

>

>

R
3

F
3

R
1

R
2R

3

F
2

W

F
1

F
3

W

A

B

O



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For equilibrium of AB,

Resolving along AB,

3 1 1F F cos 2 R sin 2 sin 2 0W     

 

3 1

1 1 3

1 1

7
F F cos 2 sin 2

15

8 3 24
F 1 cos 2   (since F =F )

15 5 75

4 24 8
F 1 ;   F

5 75 45

W
W

W W

W W

 



 
   

 

   

 
   

 

For equilibrium to be possible,

31 2

1 2 3

FF F
 ;    ,

R R R
    

8 15 8 15 8 15
 ;  ;  

45 7 45 23 45 8

W W W

W W W
       

i.e
8 8 1

,    ;    
21 69 3

    

Hence for equilibrium to be possible 
8

21
 

Example 12

An equilateral triangle ABC rests in a vertical plane with the side BC on a rough horizontal plane. A
gradually increasing horizontal force is applied on its highest vertex A, in the plane of the triangle. Prove

that the triangle will slide before it tilts if the coefficient of friction be less than 3

3
.

Method I

Forces acting on the triangle ABC are

(i) Weight W at G

(ii) Horizontal force P at A

(iii) Frictional force F and normal reaction at A

If the triangle topples, it topples about C.

At the point of toppling the normal reaction acts at C.

Weight W at G and the horizontal force P at A meet at A.

Therefore, the resultant S of F and R passes through A. (along CA)

Let   be the angle between R and S.

(i) If  ,  slides before toppling

(ii) If ,   topples before sliding

0 8

69

1

3

8

21

>

>

>

>

A

B C

P

S

R

W

<

G

F



300 300
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If ,   then tan tan 

i.e.  tan tan 30  

1 3 3
tan ;   <

3 33
   . Hence if  

3
<

3
 , the triangle will slide before it topples.

Method II

For equilibrium of the triangle ABC.

Resolving horizontally,

P F 0    ;  F = P     ........................... 

Resolving vertically

R-W = 0   ;  R = W ............................. 

At limiting equilibrium

F P
  ;  ;   P =  W

R W
   

For equilibrium of the triangle ABC,

P F 0    ;  F = P   

R-W = 0       ;  R = W

At the point of toppling R will act at C

Taking moments about B

Bm    R 2  P 3 W. 0

W
P

3

a a a   



When P W , lamina begins to slide.

When 
W

P
3

  , lamina toples about C.

If 
W

W<
3

 , lamina will slide before it topples.

ie If 
1

3
  , lamina will slide before it topples.

>

>

A

B C

P

R

W

<
F

W

>
A

B C

P

<

G

F

>

R
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7.4  Exercises

1. Find the least force which will move a mass of 80 kg up a rough plane inclined to the horizontal at 30°.

The coefficient of friction is 
3

4
.

2. If the least force which will move a weight up a plane of inclination   is twice the least force which
will  just prevent the weight from slipping down the plane, show that the coefficient of friction between

the weight and the plane is 
1

tan
3

 .

3. The least force which will move a weight up an inclined plane is P. Show that the least  force, acting

parallel to the plane, which will move the weight upwards is 2P 1  , where   is the coefficient of

friction.

4. The force P acting along a rough inclined plane is just sufficient to maintain a body on the plane, the

angle of friction   being less than  , the angle of plane. Prove that the least force, acting along the

plane, sufficient to drag the body up the plane is 
 
 

sin
P

sin

 

 




.

5. A uniform ladder rests against a vertical wall at an angle 30° to the vertical. If it is just on the point of
slipping down find the coefficient of friction assuming it to be the same for the wall and the ground.

6. A uniform ladder of weight w rests on a rough horizontal ground and against a smooth vertical wall
inclined at an angle  to the horizontal. Prove that a man of weight W can climb up the ladder without

the ladder slipping, if  2(1 - μ tan α)
 > 

2μ tan α - 1

w

W

7. A straight uniform beam of length 2  rests in limiting equilibrium in contact with a rough vertical wall

of height h, with one end on a horizontal plane and the other end projecting beyond the wall. If both

the wall and the plane are equally rough, prove that  , the angle of friction is given by

.sin 2 sin cos 2h      where   is the inclination of the beam to the horizontal.

8. A uniform ladder rests with its ends against a rough vertical wall and an equally rough horizontal

ground, the coefficient of friction at both points of contacts is 
1

3
. Prove that if the inclination of the

ladder to the vertical is 1 1
tan

2
 , a weight equal to that of the ladder cannot be attached to it at a point

more than 
9

10
th of the distance from the foot of the ladder without destroying the equilibrium.
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9. A heavy uniform rod of length 2a lies over a rough peg with one extremity leaning against a rough

vertical wall. If    be the distance of the peg from the wall and the point of contact of the rod with the

wall is above the peg, if the rod is on the point of sliding downwards show that 
3 2sin cos

c

a
 

where  is the angle of friction at both contact points and  is the angle between the rod and downward
vertical.

10. A uniform ladder of length   rests on a rough horizontal ground with its upper end projecting slightly
over smooth horizontal rail at a height a. If the ladder is about to slip and is the angle of friction on

the ground, prove that 
2 2

2 2
tan

a a

a











11. A uniform rod is in limiting equilibrium, one end resting on a rough horizontal plane and the other on an
equally rough plane inclined an angle  to the horizontal,  be the angle of friction and the rod be in a

vertical plane, show that the rod is inclined to be horizontal at an angle 
 

 
1 sin 2

tan
2sin sin

 

  

 
 

 

12. A uniform rod is placed within a fixed rough vertical circular loop. If the rod subtends an angle of 60°

at the center of the loop and coefficient of friction is 
1

3
, show that in the position of limiting equilib-

rium the inclination of the rod to the horizontal is 1 3
sin

7
 .

13. Two equal uniform rods AC, CB are freely joined at C and rests in a vertical plane with the ends A,B
in contact with a rough horizontal plane. If the equilibrium is limiting and the coefficient of friction is .

Show that  
2

4ˆsin
1

ACB






.

14. A uniform lamina in the shape of an equilateral triangle rests with one vertex on a horizontal plane and
the other vertex against a smooth vertical wall. The vertical plane containg the lamina is perpendicular
to  the wall. Show that the least angle that its edge through these vertices  can make with the horizontal

plane is given by 
1

cot 2
3

   ,     being the coefficient of friction.

15. A uniform ladder AB of length 2a and weight W rests with one end A on a rough horizontal floor and
the other end B against a rough vertical wall,  being the coefficient of friction at both ends of the

ladder. The ladder is in inclined to the floor at an angle 
4


 and a small cat of weight nW gently climb

up the ladder, starting from A. Show that, in the position of limiting equilibrium of the ladder, the cat

has climbed a distance 
 

2

2
(1 2 ) 2 (1 ) 1

1

a
n n

n
 


     

 along the ladder..
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Given further that 
1

2
  , show that the cat reach the top of the ladder before the ladder slips, if

1

4
n  . what happens if 

1

4
n 

16. A uniform ladder AB of length  and weight w rests with end A on a rough horizontal ground and with

the other end B against a smooth vertical wall. The ladder is in a vertical plane perpendicular to the
wall and is inclined an angle of to the ground. The coefficient of friction between the ladder and the

ground is  . A force P is applied horizontally towards the wall at the point C on the ladder with

( )AC a   so that limiting equilibrium is attained with the ladder on the point of sliding towards the

wall. Show that  P 2 tan
2( )

w

a
  







17. Two uniforms rod AB, BC of equal weight but different lengths, are freely jointed together at B and
placed in a vertical plane over two equally rough fixed pegs in the same horizontal line. The inclination

of the rods to the horizontal are ,   and they are both on the point of slipping. Prove that the

inclination   to the horizontal of the reaction at the hinge is given by 2 tan cot( ) cot( )       

where   is the angle of friction at the pegs.

18. Two uniform equal ladders of length  are hinged at the top and rest on a rough floor forming an

isosceles triangle with the floor of vertical angle 2  A man whose weight is n times that of either

ladder goes slowly up one of them. Calculate the reaction at the floor when his distance from the top

is x, and show that slipping begins when 
2 tan

tan

nx
n

 

 


 



19. A smooth cylinder of radius a is fixed on a rough horizontal table with its axis parallel tothe table. A
uniform rod ACB of length 6a and mass M rests in equilibrium with the end A on the table and the
point C touching the cylinder. The vertical plane containing the rod is perpendicular to the axis of the

cylinder and the rod makes an angle 2 with the table.

a) Show tha the magnitude of the force exerted by the cylinder on the rod is 3Mgcos 2 .tan 

b) Show also that  , the coefficient of friction between the rod and the table, is given by
2(cot 3cos 2 ) 3sin 2 cos2      ,  if the equilibrium is limitimg

20. ABCD represents the central vertical cross section of a uniform
cube of side 2a and weight W. The cube is placed on a rough
plane of inclination to the horizontal. A gradually increasing
horizontal force P is applied at the point D as shown in the
diagram, the coefficient od friction between the cube and the
plane being . Find the range of value of so that the equilibrium

is broken by moving up the plane given 
1

tan
2

  .
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8.0  Centre of Gravity

8.1 Centre of gravity of system of particles

Centre of gravity of a body or a system of particles rigidly connected together is the point through which
the line of action of the weight of the body always passes in whatever the position the body is placed.

Centre of gravity of system of particles

Let the particles of weights w
1
, w

2, 
............ w

n
 be placed at points A

1
, A

2
, ......... A

n
 lying in one plane. Let

the coordinates of these points referred to rectangular axis OX, OY be (x
1
, y

1
), (x

2
, y

2
) ...............(x

n
, y

n
)

Let  ,x y  be the coordinate of the centre of gravity referred to OXY..

Then weights of the particles form a system of parallel forces, whose resultant (w
1 
+ w

2 
+ ........... + w

n
)

acts at  ,x y . Suppose the plane to be horizontal, and taking moments about OX and OY for the forces

and the resultant, we have

Note :

In uniform bodies centre of gravity, centre of mass, and the centroid are usually the same.

 1 2 1 1 2 2

1

1

.......... ...........n n n

n

i i
i

n

i
i

y w w w w y w y w y

w y

y

w





      






 1 2 1 1 2 2

1

1

.......... ...........n n n

n

i i
i

n

i
i

x x x

x

x w w w w w w

w

x

w





      





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8.2 Centre of gravity of uniform bodies

Centre of gravity of a uniform rod

AB is a uniform rod and G is the midpoint of AB.

Then G is the centre of gravity of the rod AB

Centre of gravity of a uniform triangular lamina

Let AB be a triangular lamina. Suppose it is divided into a very large

number of narrow strips, such as PQ parallel to BC.

Centre of gravity of each strip is at its midpoint. Hence the centre of

gravity of the whole triangle lies on the line going through the midpoints

of the strips.

Thus the centre of gravity is in the median AD

Similarly the centre of gravity lies on the medians through B and C.

Therefore, the centre of gravity of the lamina is the point of intersection

of the medians where 
AG 2

=
GD 1

Centre of gravity is the point on the median at a distance equal to two thirds from the vertex.

Centre of gravity of three equal particles placed at the vertices of a triangle

The weights w at B and C are equivalent to 2w at D where D is the

midpoint of BC.

Now the system is equivalent to w at A and 2w at D.

The weights w at A and 2w at D are equivalent to 3w at G.

Hence centre of gravity of this system is the intersection point of the

medians.

The centre of gravity of any uniform triangular lamina is the

same as that of three equal particles placed at the vertices of

the triangle.

Centre of gravity of a uniform parallelogram lamina

Centre of gravity of a parallelogram lamina is the

intersection point of the diagonals.

Centre of gravity of a uniform circular ring

The circular ring is symmetric about any diameter. Therefore, the centre of gravity of the circular ring is the

point where the diameters meet, i.e. the centre of the circular ring.
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8.3 Worked examples

Example 1

One side of a rectangle is twice of the other. On the longer side, an equilateral triangle is described. Find
the centre of gravity of the lamina formed by the rectangle and the triangle.

Let AB = a, then AE = 2a

By symmetry centre of gravity of the lamina lies on MC.

where M is the mid point of AE

Area of ABDE = 2a2

Area of BCD = 23a

Let w be the weight of unit area.

Lamina weight Centre of gravity from M along MC

ABDE 2a2w
2

a

BDC 23 wa
1

3
3

a a

ABCDE   22 3 wa x

Take moment about AE.

Hence centre of gravity is N , midpoint of BD

Example 2

The figure shows a uniform lamina ABCDE where ABDE is
a rectangle and BCD is a right angled triangle. Find the cen-
tre of gravity of the above lamina. If this lamina is suspended
from C, find the angle between CE and the vertical.

Area of ABDE = 15 x 12 = 180 cm2

Area of BCD   = 
21

12 6 36 cm
2
  

Let w be the weight per unit area
Lamina Weight       Distance of centre of gravity

from AE from AB

ABDE 180w
15

cm
2

6 cm

BCD 36w
1

15 6 17 cm
3

  
2

12 8 cm
3
 

ABCE 216w x y

 

 
 

2 2 3
AE             2 3 w    = 2 w 3 w 

2 3

2 3   3

2 3

a a
a x a a a

x a a a

a

x a

 
    

 

   

 


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Taking moment about AE, Taking moment about AB

Centre of gravity is at the distance 
19

cm
3

from AE and 
109

cm
12

 from ABAB

When the lamina hangs freely from C, CG is vertical.

Example 3

Particles of weights 5, 7, 6, 8, 4 and 9 N are placed
at the angular points of a regular hexagon taken in
order. Show that the centre of gravity coincides with
the centre of hexagon.

Let the length of each side of the hexagon is 2a and
O is the centre of the hexagon taken as origin. Also
take OC as x - axis and OM as y-axis.

AB 2 OC=2 =ODa a 

and 2 2OM  4   3a a a  

Let coordinates of centre of gravity be  ,x y

Taking moment about OC

6.2 8. 7. 4.( ) 5.( ) 9.( 2 ) (6 8 7 4 5 9)

27 27

39

0

a a a a a a x

a a
x

             






1

MG
tan

CM

12

21

19
12

3
109

21
12

68

143

68
tan

143

y

x



 















 
  

 

15
216  180 36 17

2

12 75 34

109

109
cm

12

w x w w

x

x

   

 





216  y 180 6 36 8

12 y 60 16

76

19
y cm

3

w w w   

 




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Taking moment about OM

8. 3 4. 3 6.0 9.0 5.( 3) 7.( 3) (6 8 7 4 5 9)

12 3 12 3

39

0

a a a a y

a a
y

            






The centre of gravity coincides with the point O which is the centre of the hexagon.

Example 4

A uniform circular disc of radius 
2

r
 is cut off from a circle of a radius r of the disc as diameter. Find the

centre of gravity of the remainder.

Let AB be the diameter of the circular disc and O its centre.

Let O´ be the centre of the disc described on AO as diameter

and w be the weight per unit area.

Weight of the large circulardisc = 2r w

Weight of the small circulardisc = 
2

21
 = 

2 4

r
w r w 

 
 
 

Let G be the centre of gravity of the remainder.

By symmetry centre of gravity of the remainder lies on AB.

Taking moment about AY,

7
OG

6 6

r
r r  

Therefore, the distance of the centre of gravity of the remainder from the centre of the original disc is 
1

6
r

along the diameter.

2 2 2 2 |

2 2

2

- AG = AO - AO
4 4

r
. r  - .

4 2
3

4

7

8
3

4

7

6

r r w r w r w r w

r w r w

r w

r

r

 
 






 
  

 






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Example 5

ABCD is a square lamina of side 2a. E is the midpoint of the side BC. Find the distance of the centre of
gravity of the portion AECD from A.

Let AB and AD are the x, y axes respectively and w be
the weight of unit area.

Weight of lamina ABCD is 4a2w

Weight of portion ABE is 
2 21

. 2  
2

a w a w

Let G
1
,G

2 
be the centre of gravity of ABCD and ABE re-

spectively and G be the centre of gravity of the portion
ABCD.

Let  G ,x y

Taking moment about AD, Taking moment about AB,

Example 6

A uniform triangular lamina ABC, obtuse angled at C stands in a vertical plane with the side AC in contact
with a horizontal table. Show that the largest weight, which if suspended from vertex B will not overturn the

lamina is 
2 2 2

2 2 2

1 3

3

a b c
W

c a b

  
 

  
, where W is the weight of the triangle and a, b, c have their usual meanings.

Centre of gravity of the lamina is same as the equal weights on
the vertices of the triangle.

So the weight on points A, B, C is 
1

3
W

Let w be the largest weight suspended from B. At
this stage reaction given by the table to the lamina
acts through the point C.

 2 2 2 2

2 3

2
4  - 4  a -   2

3

8
3  

3

8

9

a w a w x a w a w a

a w x a w

x a

   





 2 2 2 2

2 3

1
4  - 4  a -   

3

11
3  

3

11

9

a w a w y a w a w a

a w y a w

y a

   





2 2 2

2 2

AG

8 11

9 9

185

9

x y

a a

a

 

   
    
   



E
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The weight W of the lamina can be considered as three particles of weight 
3

W
placed on vertices A, B and

C. As the weight w increases the lamina tends to topple about point C. When w is maximum, reaction R
will act at C.

For the equilibrium of the lamina taking moment about C,

Centre of gravity of a circular arc

Let AB be a circular arc and O be the centre of the circle whose
radius is a. AB subtends angle 2at the centre O.

P, Q are the two close points on the arc such that ˆPOQ = 

and ˆMOP =

M be the midpoint of the arc, ˆMOP= , w weight per unit length

Weight of elemet PQ =   wa 

Weight of the arc AB =   wa d





Centre of gravity of element PQ from O is cosa  .

By symmetry centre of the arc AB lies on OM.

Let G be the centre of gravity of the arc AB.

Taking moments about O

Deduction :

Centre of gravity of semicircular arc, when 
sin

22,    OG 
2

2

a
a

  





 

2

2 2 22 2 2

2 2 2 2

2 2 2

2 2 2

2 2 2

+ cos ( ) . 0
3 3

+
23

cos
3 2

2 ( )

3

3

3

W W
w a c b

W
w

b b b

W a c c a ba b c
a

ab

w b c a b

W c a b

W b a c
w

c a b


 

   
 

 
 

   
           

  


 

  
  

  

   

2

2

2

  OG =   . cos

  .OG  cos  

.OG = sin

 . 2 . OG =  . 2 sin

sin
OG = 

a d w a d w a

aw d a w d

aw a w

aw a w

a

 

 





 

 

  

  

 

 





 

 





 

 

 
 
 



 

 
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Center of gravity of a sector of a circle

Let AOB be a sector of a circle of radius a and centre O.

Arc AB subtends 2 at O. M be the midpoint of AB.

P, Q are two close point on the arc AB such that ˆMOP =  and

ˆPOQ =  . Let m be the weight per unit area

weight of 21
 POQ =  

2
a m

weight of sector 
+

2

-

1
AOB =  

2
a d m







Centre of distance of AOB from O is 
2

cos
3

a 

By symmetry centre of gravity of the sector G lies on OM

Taking moments about O,

Deduction :
Centre of gravity of a semicircular disc.

 when 
sin

2 42,  OG 
2 3 3

2

a
a





 

  

Centre of gravity of a segment of a circle

Let AMB is a segment of a circle with centre O and radius a.

By symmetry centre of gravity of the segment G lies on OM.

w - weight of a unit area

  Figure Weight Centre of gravity from O

Sector OAMB
21
.2 .

2
a w

2 sin

3
a





Triangle OAB
1

. 2 sin  . cos . 
2

a a w 
2

cos
3

a 

Segment AMB 2 ( cos )a sin w   OG

   

 

+
2 2

-

2 3

2 3

1 1 2
. OG = . . cos

2 2 3

.OG = sin
2 3

2 .OG = .2sin
2 3

2 sin
OG = .

3

a d m a d m a

ma ma

ma ma

a

 

 

 

 

  

 

 









 

 

 
 
 
 
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Taking moment about O,

Deduction :

When 
2


  , segment becomes a semicircular lamina, 

4
OG = 

3

a



Centre of gravity of a solid hemisphere

Let OM be the axis of symmetry and O is the centre and a the
radius of the sphere.

Let PQ be circular disc with thickness x  and in a distance x
from O

Let w be the density of the sphere.

Mass of 2PQ .wr x 

Centre of gravity of PQ, 2 2( )  wa x x   from O is x.

 Mass of the hemisphere =  2 2

0

 w
a

a x dx 

By symmetry, centre of gravity of the hemisphere G lies on OM.

Taking moments about O,

2 2

2

2

2

3

1 2 sin 1 2
( sin cos ) . OG = . 2 . . . 2 sin . cos . . cos

2 3 2 3

2 2
( sin cos ) . OG = sin sin cos

3 3

2
sin (1 cos )

3

2
sin

3

2 sin
OG = 

3( - sin cos )

a w a w a a a w a

w a a

a

a

a

 

 

 




      



     

 





  

   2 2 2 2

0

3 2 2 4
2

0 0

4
3

.  OG = . .

 OG = 
3 2 4

2
. OG = . 

3 4

3
OG = 

8

a

a a

a x dx w a x dx w x

x a x x
w a x w

a
w a w

a

 

 

 

 
  

 

   
    

   



 
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Centre of gravity of a hollow hemisphere

Let OM be the axis of symmetry, O the centre  and a the radius
of the sphere.

Let PQ be circular ring with the height of a   and in a distance

cosa  from O.

Also let w be the weight per unit area.

weight of PQ (2 )( ).a a w  

Centre of gravity of PQ from O is cosa  .

Mass of the hollow hemisphere 
2

0

2 sin   a a d w



   

By symmetry centre of gravity of the hemi sphere G lies on OM

Taking moments about O,

Centre of gravity of a solid cone

Let h be the height and  be semi vertical angle of the cone.

Consider a circular disc PQ with thickness x and a
distance x from vertex O.

Let w be density of the cone

      Weight of PQ 2  w gr x 

2( tan ) .w gx fx 

      Weight of the cone 2 2

0

tan .  w.g
h

x dx  

Centre of gravity of PQ from O is x

By symmetry centre of gravity of the cone G lies on OM.

 

2 2

0 0

2 2
2 3

0 0

2 2
2 3

00

2 3

2 sin    OG = 2 sin   cos

2 sin  . OG = sin 2  

- cos - cos 2
2 .OG = 

2

2 0-(-1)  .OG =  

OG =  
2

a a d w a a d wa

a w d a w d

a w a w

a w a w

a

 

 

 

      

     

 
 

 

 
 
 
  

   
   

  

 

 
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Taking moment about O

Centre of gravity of a hollow cone

Let h be the height and  be semi-vertical angle of the cone.

Consider a circular ring PQ with a height x  at a distance

cosx 

Let w be the weight per unit area.

     Weight of PQ  2 sin .wx x  

       Weight of the Cone  
0

2 sin .wx dx  


By symmetry centre of gravity of the cone G lies on OM

Taking moments about O,

2 2 2 2

0 0

2 2 2 3

0 0

3 4
2 2

0 0

3 2 4 2

OG . tan   tan   .

OG . tan  tan  

OG . tan  tan  
3 4

OG . tan    = tan  
3 4

3
 OG = 

4

h h

h h

h h

x dx w x dx w x

w x dx w x dx

x x
w w

h w h w

h

   

   

   

 
 

 
 

 

 
 

 





 

 

0 0

2

0

2 3

0 0

2 3

OG . 2 ( sin ) . 2 sin . cos .

OG.2 sin . 2 sin cos .

OG.2 sin . 2 sin cos .
2 3

OG. 2 sin   2 sin cos .
2 3

2
OG = cos

3

2
OG = 

3

x dx w x dx x w

w x dx x dx w

x x
w w

w w

h

    

    

    

    



 
 

 





 
 

 

 

 

 



 

 


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Example 7

From a uniform solid right circular cylinder of radius r and height h, a solid right circular cone of radius r

and height 
2

h
 is bored out so that the base of the cone coincides with one end of the cylinder. Show that the

centre of gravity of the remainder is on the axis at a distance 
23

40

h
 from the base of the cone.

By symmetry, centre of gravity of the remainder lies on the axis through O.

Figure Weight Centre of Gravity from O

Cylinder 2r h g 
2

h

Cone
21

3 2

h
r g 

1

4 2 8

h h 
 

 

Remainder
25

6
r h g  OG

Taking moment about O,

Example 8

A uniform solid body formed by welding together at coincidental bases of radii a, a hemisphere and a right
circular cone of semi-vertical angle  . If the body can rest in equlibrium with any point of the curved
surface of the hemisphere in contact with a horizontal table, find the value of  .

The body rest in equlibrium with any point of the curved surface of the hemisphere in contact.

Then the reaction through the point of contact and the weight of the whole body 1 2(w + w ) should act

through the point of contact and the centre O.

Therefore, taking moment about O

2 2 25 1
.OG =   .  

6 2 3 2 8

5 23
.OG = 

6 2 48 48

23
OG

40

h h h
r h g r h g r g

h h h

h

     
     

     
     

 



1 1 2 2

3 2

2 2

w . OG   w .OG 0

2 3 1 1
. . 0

3 8 3 4

3

1

3

1
tan

3

6

a a a h h

a h

a

h

   






 

 








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Example 9

A toy is in the form of a composite body formed by joining together a uniform solid right circular cone of

density  , base radius a and height 4a and a uniform solid hemisphere of density   and base radius a so

that their bases coincide. Find the distance of the centre of gravity of the toy from the centre of the common
base. If the toy cannot be in stable equilibrium with the curved surface of the cone in contact with a smooth
horizontal plane, show that  20  .

By symmetry centre of gravity of the toy G lies on OM.

Figure Weight Centre of gravity from N

Cone
21
.4 . g

3
a a  1

1
NG .4

4
a a   

Hemisphere
32
. g

3
a  2

3
NG

8

a


Toy
32

(2 )g
3

a   NG

Taking moment about O

For non stability NC < NG

3 3 32 4 2 3a
(2 )g . NG = g(- )  g.

3 3 3 8

3
(2 ).NG = - 2  + 

8

(3  - 16)
NG = 

8(2+ )

a a a a

a
a

a

      

 





 



(3 16)
tan

8(2 )

1 (3 16)

4 8(2 )

2(2 ) 3 16

20

a a









 













  


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Example 10

A uniform solid cone of semi - vertical angle 15° rests with its base on a rough horizontal floor. It is tilted to
one side by a light inextensible string attached to its vertex. The string pulls the cone downwards making an
angle 45° with the horizontal, in a vertical plane through the axis of the cone. The edge of the cone is about
to slip on the floor, when the vertex is vertically above the point of contact of the edge and the floor. Write
down the sufficient equations to determine the tension T in the string, the normal reaction and the frictional
force. Hence show that

i.
3 2

W
16

T 

ii. The value of the coefficient of friction is 
3

19

For the equilibrium of the cone

Taking moment about A

              Am

Resolving vertically,

Resolving horizontally,

For limiting equilibrium,

3
T. sin 45 . sin15 0

4

3
T. sec15 .sin 45 . sin15 0

4

T 3
sin15

42 cos15

3 2
T = sin30

8

3 2

16

W h

h W h

W

W

W

   

    

 








      F - Tsin 45  = 0

3
                          F = 

16
W

 

F

R

3

16
19

16

3

19

W

W











 R. Tcos 45  - W = 0

19
                         R = 

16
W

 
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Example 11

A solid is formed by removing a right circular cone of base radius a and height a from a uniform solid
hemisphere of radius a. The plane base of the hemisphere and the cone are coincidental with O as the
common centre of both. Find the distance from O of the centre of the mass G of the solid.

The figure show the cross section of the above solid resting in equilibrium with
a point on the curved surface in contact with a rough plane inclined at angle 
to the horizontal. O and G are in same vertical plane through a line of greatest

slope of the plane. Given that OG is horizontal. Show that    030  . Given

the weight of the hemisphere is W.

Obtain in terms of W the values of the frictional force and the normal reaction
at the point of contact.

Find also the smallest value of the coefficient of friction between the plane and
the solid.

By symmetry centre of gravity of the remainder a lies on the axis of the cone.

Figure Weight Centre of Gravity from O

Hemisphere
32
W

3
a

3

8
a

Cone
21
. W

3
a a

1

4
a

Remainder
31
W

3
a OG

Taking moment about O,

For the equilibrium of the solid, weight of the solid 
W

2
should passes

lines of the action of three forces F, R, 
W

2
 through AA

3 3 31 2 3 1 1
.OG = . .

3 3 8 3 4

6 1
OG = 

8 4

2

a W a W a a W a

a a

a

  





OG
sin  =

OA

2           

1
           

2

         θ = 30

a

a








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   R - cos  = 0 
2

                          R = cos
2

                             =  cos 30
2

3
                             =  

4

W

W

W

W









min

F

R

4

3

4

1

3

1

3

W

W

















Resolving parallel to the plane, Resolving perpendicular to the plane,

For equilibrium,

Example 12

The figure shows the remains of a uniform solid right circular cylinder ABCD of height H and base radius
R, after solid right circular cone EAB of height h and base radius R is scooped out. Find the distance of
gravity of the resulting body S from AB. Hence show that if the centre of gravity of S is at E then

 2 2 Hh   .

The body S is placed on a rough plane making an angle 
2



 
 
 

 with the horizontal, the base DC being on

the plane. The plane is rough enough to prevent S from skipping. Assuming that centre of gravity of S is at

E show that S will not topple if  R cot 2 1 H   .

By symmetry centre of gravity of S lies on the axis of the cylinder.

Figure Weight Centre of gravity from AB

Cylinder 2R HW
H

2

Cone
21

R W
3

h
4

h

Body S
2R H -  W

3

h


 
 
 

y

   F - sin  = 0 
2

                         F = sin
2

                            =  sin 30
2

                            =  
4

W

W

W

W








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Taking moment about AB

If centre of gravity is on E, then y h

If KM < DM, the body will not topple.

Example 13

In the figure below, ABCD represents a uniform solid body of density   in the form of a frustum of height

h of a right circular cone. The diameters of its circular plane faces are AB = 2a , and CD = 2a where  is

a parameter and 0 1  .

Show by intergration that its mass is  
2 21

(1 )
3

a h      and that its centre of mass G is at a distance

2

2

3 2

4 1

h  

 

  
 

  
 from the centre of the smaller face.

Deduce the mass and the position of the centre of mass of uniform
right circular solid cone of base radius a and height h.

A solid body J is obtained frustum ABCD by scooping out a right

circular solid cone VAB of base radius a  and hight 
2

h
.

Find the position of the centre of mass G
1
 of J and verify that G

1
 cannot coincide with V.

2 2 2

2 2

2 2

H 1 1
R H -    y = R H .  - R .

3 2 3 4

H
H -    y  = 

3 2 12

6H
 y  = 

4(3H )

h
W W hW h

h h

h

h

  
 
 
 

 
 

 





  

2 2

2 2

2 2

2 2

6H

4(3H- )

3 12H 6H 0

4H 2H 0

( 2H) 2H 0

2H+ 2H 2H 2H 0

2H 2H ,   2H+ 2H

h
h

h

h h

h h

h

h h

h




   

  

  

   

 

 

H 2H 2H

                       = 2 2 H

h h    



 

(H ) tan R

(H ) R cot

2 1 H < R cot

h

h







 

 


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 

2

2

0

2 2 2
3 2 2 2

2

0

2 2 4 2 3 2
2 2

2

0

2 2 4 2 3 2
2 2

2

 = .

1

LG = 
M

(1 ) 2
(1 )

M

(1 )
2 (1 )

M 4 3 2

(1 )
2 (1 )

M 4 3 2

M. LG

h

h

h

r x x

a
x a xdx

h

a a
x x a x dx

hh

a x a x x
a

hh

a x a x x
a

hh

  


 

  
 

 
  

 
  



 
 

 

 
    

 

  
     

  

  
     

  









2 2
2 2

2 2 2 2 2

(1 ) 2
(1 )

M 4 3 2

3(1 2 ) 8 8 6

M 4 3

h a

a h

 
 

      

 
   

 

     
  

 

The body J is suspended freely from a point on the circumference of the larger face. Show that in the
position of equilibrium the axis of symmetry of J makes and acute angle  with the vertical given by

2

2

8 2 2
tan

4 8 5

a

h

 


 

  
  

  

Consider circular disc PQ with height of x at a distance x from AB.

Volume of PQ 2r x 

Mass of PQ 2r x  

      

By symmetry centre of mass G lies on the line connecting the centre of bases.

(1 )

(1 )

(1 )

x h

r a a

a
r a x

h

a
r x a

h

 








 


 


 

    

 
 
 

2

0

3

2

0

0

3 3

33 3
2

2 2

  =

(1 )

(1 )
.

(1 )
3

1
3 (1 )

1(1 )

3 1 3 1

M = (1 ) ...........................(1)
3

Mass of the frustum
h

h

h

r dx

a x
a

a x h
a dx

h a
h

h
a a a

a

ha
a h

a

a h

 





   




  



  


 


  

 
         

     


 

 

 




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When  = 0 the frustum becomes a cone with height of h and base radius a.

Mass of the cone 
21

3
a h   from (1) with  = 0

Centre of the mass of the cone from the vertex is 
3 3

.
4 1 4

h h
    [ from (2) of  = 0]

Finding the centre of gravity of J

Figure Weight Centre of gravity from AB

Frustum 2 21
g(1+ + )

3
a h   

2

2

2 3

4 1

h  

 

  
 

  

Cone VAB  
21

3 2

h
a g  

1
.

4 2 8

h h


Remainder
2

21
1

3 2
a h g


  

 
  

 
y

Taking moment about L

Point V cannot coincide with G
1

 

 

 

2 2
2

22 2

2 2

2

2

2 3
12M

2 3

12
1

3

2 3
           ...........................(2)

4 1

a h

a h

a h

h

 
 

  


  

 

 

  

 


 

  
  

  

 
 

 

 

22
2 2 2 2 2

2

2 2
2

2

2

2

2

2 2

2

2 31 1 1
1 1 . .

3 2 3 4 3 2 81

1 2 3
2 4 16

3 8 12

8 2 2

3 8 12

2 8 22 2

3 8 12 4 2 2

8 2 2

h h h
a h g y a g a g

h h
y

h
y

h h h
y

h

 
         

 

 
  

 

 

 

 

   

 

   
       
     

 
      

 

  
  

  

  
   

  

     
 

   


2

2

4
0                       ( 0< <1)

8 2 2

h 


 

 
 

  


2

2

2

2

2

2

tan

3 8 12

8 2 2

5 8 4

8 2 2

8 2 2
tan

4 8 5

a

h y

h
h y h

h

a

h



 

 

 

 

 


 




  
    

  

  
  

  

  
   

  

vetical
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8.4  Exercises

1. From a uniform triangle ABC, a portion ADE is removed where DE is parallel to BC and the area of
the triangle ADE equals to half of ABC. Find the centre of gravity of the remainder from BC.

2. From a triangle ABC, a portion ADE, where DE is parallel to BC, is removed. If a and b be the
distances of A from BC and DE respectively, show that the distance of the centre of gravity of the

remainder from BC is 
2 22

3( )

a ab b

a b

 


.

3. Three rods of length a, b, c are joined at their ends so as to form a triangle. Find the centre of gravity
of the triangle.

4. From a uniform triangular board ABC a portion consisting of the area of the inscribed circular is

removed. Show that the distance of the centre of gravity of the remainder from BC is 
3

2

S 2 3

3

s aS

as s S





 
 

 
where S is the area, s the semi-perimeter of the board and BC = a.

5. ACB is a uniform semicircular lamina with diameter AOB, and OC is the radius perpendicular to AB.

A square portion OPQR is cut off from the lamina, P being on OB and length of OP is 
1

2
a . Find the

distance from OA and OC of the centre of gravity of the remaining portion. Hence show that if the
remaining portion is suspended from A and hangs in equilibrium, the tangent of the angle made by AB

with the vertical is just less than 
1

2
.

6. ABCDEF is a sheet of thin cardboard in the form of a regular hexagon. Prove that if the triangle ABC
is cut off and superposed on the triangle DEF, the centre of gravity of the whole is moved by a

distance 2

9

a , where a is the side of the hexagon.

7. Prove that the centre of gravity of a uniform semicircular lamina of radius a is at a distance 4

3

a


 from

its centre.
AOB is the base of a uniform semicircular lamina of radius 2a, O being its centre. A semicircular
lamina of radius a and base AO is cut away and the remainder is suspended freely from A. Find the
inclination of AOB to the vertical in the equilibrium position.

8. A solid cylinder and a solid right circular cone have their bases joined together, the bases being of the
same size. Find the ratio of the height of the cone to the height of the cylinder so that the centre of
gravity of the compound solid may be at the centre of the common base.

9. A solid in the form of a right circular cone has its base scooped out, so that the hollow formed  is a
right circular cone on the same base. How much must be scooped out so that the centre of gravity of
the remainder may coincide with the vertex of the hollow cone.
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10. From a uniform solid right circular cone of vertical angle 60° is cut out the greatest possible sphere.
Show that centre of gravity of the remainder divides the axis in the ratio 11 : 49.

11. A solid right circular cone of height  h  is cut off at a height 
1

2
h  by a plane perpendicular to the axis.

Find the centre of the gravity of the portion between this section and the base of the cone.

12. A hollow vessel made of uniform material of negligible thickness is in the form of a right circular cone
of surface density  mounted on a hemisphere of surface density  whose radius is equal to that of the
circular rim of the cone. If the vessel can just rest with a generator of the cone in contact with a
smooth horizontal plane, prove that semi-vertical angle a of the cone is given by the equation

   2.cot 3 3 cos 2sin       .

13. A hollow baseless cone of vertex O, semi-vertical angle  and height h is made of a uniform thin metal

sheet of mass  per unit area. Show that its mass is 2 sec tanh    and find the position of its centre
of mass.

A uniform circular disc of centre B and radius tanh  made of the same metal sheet is now fixed as the
base of the above cone. Show that the distance of the centre of mass of the composite body from O

is  

2
sec tan

3

sec tan

h  

 

 
 

 


.

The composite body is suspended from a point A on the rim of the base. If AO and AB make equal

angles with the downward vertical show that 
1

sin
3

  .

14. A crescent shaped uniform lamina is bounded by a semicircle with centre O and radius a and a

circular arc subtending an angle 
2

3


 at its centre C as shown in the figure. Show that the centre of

mass of this lamina is at a distance ka from C, where 
3 3

6 3
k








Let M be the mass of the lamina. The end A of a thin uniform straight rod AD of length 2a and mass
m is rigidly fixed to the crescent at A along the extended line BA, forming a sickle as show in the
figure. The sickle is then placed on a horizontal floor with the pan of lamina vertical and the semicircle
and the free end D of the rod touching the floor. If it stays in equilibrium in this position show that

 M 3 1 4 6k m  .
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15. Out of a uniform spherical shell of radius a, centre O, and surface density , a cone is cut off by two

parallel planes at distances cos , cosa a   from O ( on either side of O) where 0
2


     as

shown in the figure.

Show by intergration, that

(i) The mass of the is cone is  22 cos cosa   

(ii) The centre of mass of the cone lies on the axis of
symmetry midway between its two ends A, B with
the end A at a distance cosa  from O.

A thin uniform circular disc of the same surface density 

and radius sina  is now fastened to the larger circular edge

of the cone so that the centre of the disc is at B. Show that
the composite body can rest in equilibrium with any point of
the spherical surface on a horizontal floor provided that

sin 1 cos   .

16. Show by intergration that the centre of the gravity of the frustum obtained by cutting a uniform hollow
hemisphereical shell of radius a and surface density  by a plane parallel to its circular rim and at a
distance a cos  from the centre O is at the mid-point of OC where C is the centre of the smaller
circular rim.

A bowl is made by rigidly fixing the edge of a thin uniform circular plate of radius a sin a having the
same surface density s to the smaller circular rim of the above frustum. Show that the centre of gravity

the bowl is on OC at a distance 
2

2

1 cos cos
cos

1 2cos cos
a

 


 

  
 
  

 from O.

Let 
3


   and let w be the weight of the bowl. A saucepan is made by rigidly fixing a thin uniform rod

AB of length b and weight 
4

w
to the rim of the board as a handle such that the points O, A and B are

collinear as shown in the figure. Find the position of the centre of gravity of the saucepan..

The saucepan is freely suspended from the end B of the handle and hangs in equilibrium with the

handle making an angle 1 1
tan

7
  
 
 

 with the downward vertical. Show that 3b = 4a.


